Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway.

IF 10.7 1区 生物学 Q1 CELL BIOLOGY
Developmental cell Pub Date : 2024-05-06 Epub Date: 2024-03-22 DOI:10.1016/j.devcel.2024.03.002
Zhi-Feng Miao, Jing-Xu Sun, Xuan-Zhang Huang, Shi Bai, Min-Jiao Pang, Jia-Yi Li, Han-Yu Chen, Qi-Yue Tong, Shi-Yu Ye, Xin-Yu Wang, Xiao-Hai Hu, Jing-Ying Li, Jin-Wei Zou, Wen Xu, Jun-Hao Yang, Xi Lu, Jason C Mills, Zhen-Ning Wang
{"title":"Metaplastic regeneration in the mouse stomach requires a reactive oxygen species pathway.","authors":"Zhi-Feng Miao, Jing-Xu Sun, Xuan-Zhang Huang, Shi Bai, Min-Jiao Pang, Jia-Yi Li, Han-Yu Chen, Qi-Yue Tong, Shi-Yu Ye, Xin-Yu Wang, Xiao-Hai Hu, Jing-Ying Li, Jin-Wei Zou, Wen Xu, Jun-Hao Yang, Xi Lu, Jason C Mills, Zhen-Ning Wang","doi":"10.1016/j.devcel.2024.03.002","DOIUrl":null,"url":null,"abstract":"<p><p>In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a<sup>-/-</sup> mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.03.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.

Abstract Image

小鼠胃中的移行细胞再生需要活性氧途径。
在幽门化生过程中,成熟的胃首领细胞通过一种称为 "paligenosis "的进化保守过程进行重编程,重新进入细胞周期,成为表达痉挛性多肽的化生细胞(SPEM)。在这里,我们利用小鼠胃损伤后的单细胞 RNA 测序(scRNA-seq)技术,高分辨率地分析了调理细胞增生的机制。损伤导致诱导性活性氧(ROS)与线粒体活性和细胞代谢的协调变化,需要线粒体转录调节因子 Ppargc1a (Pgc1α) 和 ROS 调节因子 Nf2el2 (Nrf2)。在 Ppargc1a-/- 小鼠体内,ROS 和线粒体调控功能的缺失会导致腭裂细胞通过铁变态反应死亡。胱氨酸转运体 SLC7A11(xCT) 在通过谷胱甘肽过氧化物酶 4 (GPX4) 进行脂质自由基解毒方面起着关键作用,阻断该转运体也会增加铁突变。最后,我们还发现 PGC1α 介导的 ROS 和线粒体变化也是胰腺尖锐湿疣细胞变性的基础。总之,研究结果详细说明了新陈代谢和线粒体变化是胃损伤反应、再生和移行所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信