{"title":"The aldehyde dehydrogenase 2 rs671 variant enhances amyloid β pathology","authors":"Xia Wang, Jiayu Wang, Yashuang Chen, Xiaojing Qian, Shiqi Luo, Xue Wang, Chao Ma, Wei Ge","doi":"10.1038/s41467-024-46899-0","DOIUrl":null,"url":null,"abstract":"<p>In the <i>ALDH2</i> rs671 variant, a guanine changes to an adenine, resulting in a dramatic decrease in the catalytic activity of the enzyme. Population-based data are contradictory about whether this variant increases the risk of Alzheimer’s disease. In East Asian populations, the prevalence of the <i>ALDH2</i> rs671 variant is 30–50%, making the National Human Brain Bank for Development and Function (the largest brain bank in East Asia) an important resource to explore the link between the <i>ALDH2</i> rs671 polymorphism and Alzheimer’s disease pathology. Here, using 469 postmortem brains, we find that while the <i>ALDH2</i> rs671 variant is associated with increased plaque deposits and a higher Aβ40/42 ratio, it is not an independent risk factor for Alzheimer’s disease. Mechanistically, we show that lower ALDH2 activity leads to 4-HNE accumulation in the brain. The (<i>R</i>)−4-HNE enantiomer adducts to residue Lys53 of C99, favoring Aβ40 generation in the Golgi apparatus. Decreased ALDH2 activity also lowers inflammatory factor secretion, as well as amyloid β phagocytosis and spread in brains of patients with Alzheimer’s disease. We thus define the relationship between the <i>ALDH2</i> rs671 polymorphism and amyloid β pathology, and find that <i>ALDH2</i> rs671 is a key regulator of Aβ40 or Aβ42 generation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"30 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-46899-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the ALDH2 rs671 variant, a guanine changes to an adenine, resulting in a dramatic decrease in the catalytic activity of the enzyme. Population-based data are contradictory about whether this variant increases the risk of Alzheimer’s disease. In East Asian populations, the prevalence of the ALDH2 rs671 variant is 30–50%, making the National Human Brain Bank for Development and Function (the largest brain bank in East Asia) an important resource to explore the link between the ALDH2 rs671 polymorphism and Alzheimer’s disease pathology. Here, using 469 postmortem brains, we find that while the ALDH2 rs671 variant is associated with increased plaque deposits and a higher Aβ40/42 ratio, it is not an independent risk factor for Alzheimer’s disease. Mechanistically, we show that lower ALDH2 activity leads to 4-HNE accumulation in the brain. The (R)−4-HNE enantiomer adducts to residue Lys53 of C99, favoring Aβ40 generation in the Golgi apparatus. Decreased ALDH2 activity also lowers inflammatory factor secretion, as well as amyloid β phagocytosis and spread in brains of patients with Alzheimer’s disease. We thus define the relationship between the ALDH2 rs671 polymorphism and amyloid β pathology, and find that ALDH2 rs671 is a key regulator of Aβ40 or Aβ42 generation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.