Investigation of biofluorescence produced by the red king crab Paralithodes camtschaticus

IF 1.1 Q3 FISHERIES
Thomas Juhasz-Dora, Tina Thesslund, Julie Maguire, Thomas K. Doyle, Stein-Kato Lindberg
{"title":"Investigation of biofluorescence produced by the red king crab Paralithodes camtschaticus","authors":"Thomas Juhasz-Dora,&nbsp;Tina Thesslund,&nbsp;Julie Maguire,&nbsp;Thomas K. Doyle,&nbsp;Stein-Kato Lindberg","doi":"10.1002/aff2.159","DOIUrl":null,"url":null,"abstract":"<p>Biofluorescence is widely documented in marine organisms, yet few studies exist for decapods. After observing the king crab <i>Paralithodes camtschaticus</i> biofluoresces, we carried out studies on two separately maintained groups of male crabs under controlled conditions. Hyperspectral imaging on Group 1 (<i>n</i> = 18) examined the exoskeleton, whereas fluorospectrometry examined the hemolymph of Group 2 animals (<i>n</i> = 19). Both groups were investigated for fluorescence signals before and after exposure to a live shipping transportation simulation. The spines, chelae, eyestalks and cervical grooves of the cardiac region of <i>P. camtschaticus</i> fluoresce in the green spectra (∼500 nm), while the arthrodial membranes of the joints fluoresce in the red spectrum (∼680 nm). After the shipping simulation, we observed a significant decrease in fluorescence in the eyestalks (<i>p</i> = 0.009), while the cervical grooves showed a less significant change (<i>p</i> = 0.01). The hemolymph examined with 21 excitation wavelengths (250–350 nm) emitted fluorescence in ∼400–550 nm spectrum. We found a significant increase (<i>p </i>&lt; 0.05) in fluorescence for 16 excitation wavelengths after transport simulation. The results presented in this study indicate that king crab fluorescence changes due to external stimuli. Fluorospectroscopy or hyperspectral imaging technology may serve as an effective early indicator of preclinical stress in these commercially important decapods.</p>","PeriodicalId":100114,"journal":{"name":"Aquaculture, Fish and Fisheries","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aff2.159","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture, Fish and Fisheries","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aff2.159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Biofluorescence is widely documented in marine organisms, yet few studies exist for decapods. After observing the king crab Paralithodes camtschaticus biofluoresces, we carried out studies on two separately maintained groups of male crabs under controlled conditions. Hyperspectral imaging on Group 1 (n = 18) examined the exoskeleton, whereas fluorospectrometry examined the hemolymph of Group 2 animals (n = 19). Both groups were investigated for fluorescence signals before and after exposure to a live shipping transportation simulation. The spines, chelae, eyestalks and cervical grooves of the cardiac region of P. camtschaticus fluoresce in the green spectra (∼500 nm), while the arthrodial membranes of the joints fluoresce in the red spectrum (∼680 nm). After the shipping simulation, we observed a significant decrease in fluorescence in the eyestalks (p = 0.009), while the cervical grooves showed a less significant change (p = 0.01). The hemolymph examined with 21 excitation wavelengths (250–350 nm) emitted fluorescence in ∼400–550 nm spectrum. We found a significant increase (< 0.05) in fluorescence for 16 excitation wavelengths after transport simulation. The results presented in this study indicate that king crab fluorescence changes due to external stimuli. Fluorospectroscopy or hyperspectral imaging technology may serve as an effective early indicator of preclinical stress in these commercially important decapods.

Abstract Image

红帝王蟹产生的生物荧光研究
生物荧光在海洋生物中被广泛记录,但针对十足目动物的研究却很少。在观察到帝王蟹(Paralithodes camtschaticus)的生物荧光后,我们在受控条件下对两组分别饲养的雄蟹进行了研究。第 1 组(n = 18)的高光谱成像检查了外骨骼,而荧光光谱仪则检查了第 2 组动物(n = 19)的血淋巴。两组动物在暴露于模拟活体船运之前和之后都接受了荧光信号调查。凸刺鲃心脏部位的刺、螯、眼茎和颈沟发出绿色荧光光谱(∼500 nm),而关节部位的关节膜则发出红色荧光光谱(∼680 nm)。在模拟运输后,我们观察到眼轴的荧光明显减少(p = 0.009),而颈沟的变化不太明显(p = 0.01)。用 21 个激发波长(250-350 nm)检测的血淋巴发出的荧光波长为 400-550 nm。我们发现在模拟运输后,16 个激发波长的荧光明显增加(p < 0.05)。本研究的结果表明,帝王蟹的荧光会因外部刺激而发生变化。荧光光谱或高光谱成像技术可作为这些具有重要商业价值的十足目动物临床前应激的有效早期指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信