A predictive approach for myocardial infarction risk assessment using machine learning and big clinical data

Imen Boudali , Sarra Chebaane , Yassine Zitouni
{"title":"A predictive approach for myocardial infarction risk assessment using machine learning and big clinical data","authors":"Imen Boudali ,&nbsp;Sarra Chebaane ,&nbsp;Yassine Zitouni","doi":"10.1016/j.health.2024.100319","DOIUrl":null,"url":null,"abstract":"<div><p>Myocardial infarction is one of the most common cardiovascular diseases in emergency departments. Early prevention of this dangerous condition significantly impacts public health and considerable socioeconomic outcomes. The emergence of electronic health records (EHR) and the availability of real-world clinical data have provided opportunities to improve the quality and efficiency of healthcare by using artificial intelligence tools. In this study, we focus on the early recognition of risk factors, which can provide valuable information for early prediction of myocardial infarction and promoting a healthy life. Based on a big clinical dataset, we develop a predictive analytics approach for myocardial infarction. A vital step in efficient prediction is assessing the significance of input features, their relationships and their contributions to the disease. Therefore, we adopted statistical techniques, principal component analysis (PCA) and feature engineering. To reveal patterns and insights on our dataset, we implemented machine learning (ML) models varying from classical to more sophisticated: decision trees (DT), random forests (RF), gradient boosting algorithms (GBoost, LightGBM, CatBoost, and XGBoost) and deep neural networks (DNN). The imbalance-data issue is tackled by employing random under-sampling technique. The light gradient boosting model (LightGBM) with feature engineering on the balanced dataset is the best prediction performance achieved in this study.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100319"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000212/pdfft?md5=84022173d4bf80dc26f653c99b2bd0d2&pid=1-s2.0-S2772442524000212-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Myocardial infarction is one of the most common cardiovascular diseases in emergency departments. Early prevention of this dangerous condition significantly impacts public health and considerable socioeconomic outcomes. The emergence of electronic health records (EHR) and the availability of real-world clinical data have provided opportunities to improve the quality and efficiency of healthcare by using artificial intelligence tools. In this study, we focus on the early recognition of risk factors, which can provide valuable information for early prediction of myocardial infarction and promoting a healthy life. Based on a big clinical dataset, we develop a predictive analytics approach for myocardial infarction. A vital step in efficient prediction is assessing the significance of input features, their relationships and their contributions to the disease. Therefore, we adopted statistical techniques, principal component analysis (PCA) and feature engineering. To reveal patterns and insights on our dataset, we implemented machine learning (ML) models varying from classical to more sophisticated: decision trees (DT), random forests (RF), gradient boosting algorithms (GBoost, LightGBM, CatBoost, and XGBoost) and deep neural networks (DNN). The imbalance-data issue is tackled by employing random under-sampling technique. The light gradient boosting model (LightGBM) with feature engineering on the balanced dataset is the best prediction performance achieved in this study.

利用机器学习和临床大数据进行心肌梗死风险评估的预测方法
心肌梗塞是急诊科最常见的心血管疾病之一。及早预防这种危险的疾病对公众健康和可观的社会经济成果都有重大影响。电子健康记录(EHR)的出现和真实世界临床数据的可用性为利用人工智能工具提高医疗质量和效率提供了机会。在本研究中,我们重点关注风险因素的早期识别,这可以为早期预测心肌梗死和促进健康生活提供有价值的信息。基于大型临床数据集,我们开发了一种心肌梗塞预测分析方法。高效预测的一个重要步骤是评估输入特征的重要性、它们之间的关系及其对疾病的贡献。因此,我们采用了统计技术、主成分分析(PCA)和特征工程。为了揭示数据集的模式和见解,我们采用了从经典到更复杂的机器学习(ML)模型:决策树(DT)、随机森林(RF)、梯度提升算法(GBoost、LightGBM、CatBoost 和 XGBoost)和深度神经网络(DNN)。不平衡数据问题通过采用随机欠采样技术来解决。在本研究中,在平衡数据集上采用特征工程的轻梯度提升模型(LightGBM)取得了最佳预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信