{"title":"Predicted effectiveness of EnChroma multi-notch filters for enhancing color perception in anomalous trichromats","authors":"Lucy P. Somers, Jenny M. Bosten","doi":"10.1016/j.visres.2024.108381","DOIUrl":null,"url":null,"abstract":"<div><p>EnChroma filters are aids designed to improve color vision for anomalous trichromats. Their use is controversial because the results of lab-based assessments of their effectiveness have so far largely failed to agree with positive anecdotal reports. However, the effectiveness of EnChroma filters will vary depending on the conditions of viewing, including whether the stimuli are broadband reflective surfaces or colors presented on RGB displays, whether illumination spectra are broadband or narrowband, the transmission spectra of particular filters, and the cone spectral sensitivity functions of the observer. We created a model of anomalous trichromatic color vision to predict the effects of EnChroma filters on the color signals impaired in anomalous trichromacy. Using the model we varied illumination, filter type and observer cone sensitivity functions, and tested the effect of presenting colors as broadband reflective surfaces or on RGB displays. We also used hyperspectral images to assess the impact of the filters on anomalous trichromats’ color vision for natural scenes. Model results predicted that the filters should be broadly effective at enhancing anomalous trichromats’ equivalent to L/(L + M) chromatic contrasts under a range of viewing conditions, but are substantially more effective for deuteranomals than for protanomals. The filters are predicted to be more effective for broadband reflective surfaces presented under broadband illuminants than for surfaces presented under narrowband illuminants or for colors presented on RGB displays. Since the potential impacts of contrast adaptation and perceptual learning are not considered in the model, it needs to be empirically validated. Results of empirical tests of the effects of EnChroma filters on deuteranomalous color vision in comparison with model predictions are presented in an accompanying paper (<span>Somers et al., in prep.</span>).</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"218 ","pages":"Article 108381"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0042698924000257/pdfft?md5=1493775d1f3beda5d5ec28db097ee128&pid=1-s2.0-S0042698924000257-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698924000257","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
EnChroma filters are aids designed to improve color vision for anomalous trichromats. Their use is controversial because the results of lab-based assessments of their effectiveness have so far largely failed to agree with positive anecdotal reports. However, the effectiveness of EnChroma filters will vary depending on the conditions of viewing, including whether the stimuli are broadband reflective surfaces or colors presented on RGB displays, whether illumination spectra are broadband or narrowband, the transmission spectra of particular filters, and the cone spectral sensitivity functions of the observer. We created a model of anomalous trichromatic color vision to predict the effects of EnChroma filters on the color signals impaired in anomalous trichromacy. Using the model we varied illumination, filter type and observer cone sensitivity functions, and tested the effect of presenting colors as broadband reflective surfaces or on RGB displays. We also used hyperspectral images to assess the impact of the filters on anomalous trichromats’ color vision for natural scenes. Model results predicted that the filters should be broadly effective at enhancing anomalous trichromats’ equivalent to L/(L + M) chromatic contrasts under a range of viewing conditions, but are substantially more effective for deuteranomals than for protanomals. The filters are predicted to be more effective for broadband reflective surfaces presented under broadband illuminants than for surfaces presented under narrowband illuminants or for colors presented on RGB displays. Since the potential impacts of contrast adaptation and perceptual learning are not considered in the model, it needs to be empirically validated. Results of empirical tests of the effects of EnChroma filters on deuteranomalous color vision in comparison with model predictions are presented in an accompanying paper (Somers et al., in prep.).
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.