Yuming Zhang, Yunpeng Liu, Sizu Hou, Jianghai Geng, Ping Wang
{"title":"Study on moisture absorption characteristics of glass fibre-reinforced epoxy resin material for composite insulators based on the 3D-Fick model","authors":"Yuming Zhang, Yunpeng Liu, Sizu Hou, Jianghai Geng, Ping Wang","doi":"10.1049/hve2.12433","DOIUrl":null,"url":null,"abstract":"<p>Long-term exposure to moisture leads to a gradual deterioration of performance and reduced service life of glass fibre-reinforced epoxy resin (GFRP) material in composite insulators. Therefore, it is necessary to analyse the moisture absorption characteristics of GFRP material and the evolution of damage to their internal interface properties. Moisture absorption tests on GFRP rod material used in composite insulators to obtain their three-dimensional diffusion coefficients are conducted. Atomic force microscopy was then employed to obtain the composite material system's fibre/matrix interfacial phase parameters. Furthermore, a finite element model incorporating representative volume elements with interfacial phases and a mesoscale transient moisture absorption finite element model for the composite material was established. Finally, the moisture absorption characteristics of GFRP material and the evolution of damage to the interfacial phase under thermal-humidity cycling conditions were investigated. The results showed that the diffusion coefficient along the fibre direction in GFRP material was higher than that in the perpendicular direction. The moisture diffusion finite element model, incorporating an anisotropic interfacial phase, fitted the anisotropic diffusion coefficients of GFRP material more accurately. As moisture invaded the GFRP material, the mismatch stresses continuously increased during the moisture absorption. Moreover, the non-uniform arrangement of fibres resulted in uneven distribution of moisture-induced stresses inside the material, leading to higher mismatch stresses in areas with dense fibre arrangements in the matrix. Prolonged high and low humidity cycles led to the development of micro-cracks, micro-porosity, and interface debonding along the fibre direction at the GFRP material interfaces, thereby affecting the anisotropic moisture absorption characteristics of the material. The findings of this study provide valuable insights into the mechanisms underlying the deterioration of GFRP material in composite insulator rods due to moisture degradation.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 4","pages":"888-901"},"PeriodicalIF":4.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12433","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12433","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term exposure to moisture leads to a gradual deterioration of performance and reduced service life of glass fibre-reinforced epoxy resin (GFRP) material in composite insulators. Therefore, it is necessary to analyse the moisture absorption characteristics of GFRP material and the evolution of damage to their internal interface properties. Moisture absorption tests on GFRP rod material used in composite insulators to obtain their three-dimensional diffusion coefficients are conducted. Atomic force microscopy was then employed to obtain the composite material system's fibre/matrix interfacial phase parameters. Furthermore, a finite element model incorporating representative volume elements with interfacial phases and a mesoscale transient moisture absorption finite element model for the composite material was established. Finally, the moisture absorption characteristics of GFRP material and the evolution of damage to the interfacial phase under thermal-humidity cycling conditions were investigated. The results showed that the diffusion coefficient along the fibre direction in GFRP material was higher than that in the perpendicular direction. The moisture diffusion finite element model, incorporating an anisotropic interfacial phase, fitted the anisotropic diffusion coefficients of GFRP material more accurately. As moisture invaded the GFRP material, the mismatch stresses continuously increased during the moisture absorption. Moreover, the non-uniform arrangement of fibres resulted in uneven distribution of moisture-induced stresses inside the material, leading to higher mismatch stresses in areas with dense fibre arrangements in the matrix. Prolonged high and low humidity cycles led to the development of micro-cracks, micro-porosity, and interface debonding along the fibre direction at the GFRP material interfaces, thereby affecting the anisotropic moisture absorption characteristics of the material. The findings of this study provide valuable insights into the mechanisms underlying the deterioration of GFRP material in composite insulator rods due to moisture degradation.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf