Laser-Induced Real-Space Topology Control of Spin Wave Resonances

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tim Titze, Sabri Koraltan, Timo Schmidt, Marcel Möller, Florian Bruckner, Claas Abert, Dieter Suess, Claus Ropers, Daniel Steil, Manfred Albrecht, Stefan Mathias
{"title":"Laser-Induced Real-Space Topology Control of Spin Wave Resonances","authors":"Tim Titze,&nbsp;Sabri Koraltan,&nbsp;Timo Schmidt,&nbsp;Marcel Möller,&nbsp;Florian Bruckner,&nbsp;Claas Abert,&nbsp;Dieter Suess,&nbsp;Claus Ropers,&nbsp;Daniel Steil,&nbsp;Manfred Albrecht,&nbsp;Stefan Mathias","doi":"10.1002/adfm.202313619","DOIUrl":null,"url":null,"abstract":"<p>Femtosecond laser excitation of materials exhibiting magnetic spin textures promises advanced magnetic control via the generation of non-equilibrium spin dynamics. Ferrimagnetic [Fe(0.35 nm)/Gd(0.40 nm)]<sub>160</sub> multilayers are used to explore this approach, as they host a rich diversity of magnetic textures from stripe domains at low magnetic fields, a dense bubble/skyrmion lattice at intermediate fields, and a single domain state for high magnetic fields. Using femtosecond magneto-optics, distinct coherent spin wave dynamics are observed in this material in response to a weak laser excitation, enabling an unambiguous identification of the different magnetic spin textures. Moreover, employing strong laser excitation, versatile control of the coherent spin dynamics via non-equilibrium transformation of magnetic spin textures becomes possible by both creating and annihilating bubbles/skyrmions. Micromagnetic simulations and Lorentz transmission electron microscopy with in situ optical excitation corroborate these findings.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 30","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202313619","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202313619","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Femtosecond laser excitation of materials exhibiting magnetic spin textures promises advanced magnetic control via the generation of non-equilibrium spin dynamics. Ferrimagnetic [Fe(0.35 nm)/Gd(0.40 nm)]160 multilayers are used to explore this approach, as they host a rich diversity of magnetic textures from stripe domains at low magnetic fields, a dense bubble/skyrmion lattice at intermediate fields, and a single domain state for high magnetic fields. Using femtosecond magneto-optics, distinct coherent spin wave dynamics are observed in this material in response to a weak laser excitation, enabling an unambiguous identification of the different magnetic spin textures. Moreover, employing strong laser excitation, versatile control of the coherent spin dynamics via non-equilibrium transformation of magnetic spin textures becomes possible by both creating and annihilating bubbles/skyrmions. Micromagnetic simulations and Lorentz transmission electron microscopy with in situ optical excitation corroborate these findings.

Abstract Image

Abstract Image

自旋波共振的激光诱导实空间拓扑控制
飞秒激光激发显示磁性自旋纹理的材料,有望通过产生非平衡自旋动力学实现先进的磁控制。铁磁性[Fe(0.35 nm)/Gd(0.40 nm)]160多层膜被用来探索这种方法,因为它们承载了丰富多样的磁纹理,包括低磁场下的条纹畴、中间磁场下的致密气泡/天电晶体晶格以及高磁场下的单畴状态。利用飞秒磁光学技术,可以观察到这种材料在弱激光激发下产生的不同相干自旋波动态,从而能够明确识别不同的磁自旋纹理。此外,在强激光激励下,通过产生和湮灭气泡/天幕,磁性自旋纹理的非平衡转换可实现对相干自旋动力学的多功能控制。微磁模拟和原位光学激发的洛伦兹透射电子显微镜证实了这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信