Xuan Liu , Liwen Deng , Huang Luo , Chuanfang Yan , Hang Luo , Sheng Chen
{"title":"High energy storage performance in poly(vinylidene fluoride)-based all-organic composites via optimizing the structure of semiconductive filler","authors":"Xuan Liu , Liwen Deng , Huang Luo , Chuanfang Yan , Hang Luo , Sheng Chen","doi":"10.1016/j.jpowsour.2024.234354","DOIUrl":null,"url":null,"abstract":"<div><p>The great demand for miniaturization and lightweight energy equipment stimulates the fast development of polymer-based dielectrics with low density and easy processability. Unfortunately, the low energy density puts barriers to the development of polymer dielectrics in the new energy industry. In this work, poly(vinylidene fluoride) (PVDF)-based blending films are prepared and the energy storage properties are explored by regulating the content and structure of semiconductive polymer fillers. The experiment results show that when poly{2-((3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-yl)oxy)ethyl methacrylate} (P6) filler is added, 0.25 wt%-P6/PVDF film attains the maximal discharge energy density (U<sub>d</sub>) of 19.1 J cm<sup>−3</sup> at 624 MV m<sup>−1</sup>. Compared with poly{2-((3,6,7,10,11-pentabutoxytriphenylen-2-yl)oxy)ethyl methacrylate} (P4) filler, the P6 filler possesses better compatibility with PVDF and creates deeper traps to suppress the carrier migration and achieve the higher breakdown strength. This research offers useful references for the design of polymer-based composites with excellent energy density through blending triphenylene semiconductive fillers.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"602 ","pages":"Article 234354"},"PeriodicalIF":8.1000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324003057","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The great demand for miniaturization and lightweight energy equipment stimulates the fast development of polymer-based dielectrics with low density and easy processability. Unfortunately, the low energy density puts barriers to the development of polymer dielectrics in the new energy industry. In this work, poly(vinylidene fluoride) (PVDF)-based blending films are prepared and the energy storage properties are explored by regulating the content and structure of semiconductive polymer fillers. The experiment results show that when poly{2-((3,6,7,10,11-pentakis(hexyloxy)triphenylene-2-yl)oxy)ethyl methacrylate} (P6) filler is added, 0.25 wt%-P6/PVDF film attains the maximal discharge energy density (Ud) of 19.1 J cm−3 at 624 MV m−1. Compared with poly{2-((3,6,7,10,11-pentabutoxytriphenylen-2-yl)oxy)ethyl methacrylate} (P4) filler, the P6 filler possesses better compatibility with PVDF and creates deeper traps to suppress the carrier migration and achieve the higher breakdown strength. This research offers useful references for the design of polymer-based composites with excellent energy density through blending triphenylene semiconductive fillers.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems