{"title":"Genomic characteristics of nine Nitrospirota metagenome-assembled genomes in deep-sea sediments from East Pacific polymetallic nodules zone","authors":"Zhi-Hao Ding , Yue-Hong Wu","doi":"10.1016/j.margen.2024.101107","DOIUrl":null,"url":null,"abstract":"<div><p>Previously studies have reported that MAGs (Metagenome-assembled genomes) belong to “<em>Candidatus Manganitrophaceae</em>” of phylum <em>Nitrospirota</em> with chemolithoautotrophic manganese oxidation potential exist in freshwater and hydrothermal environments. However, <em>Nitrospirota</em> members with chemolithoautotrophic manganese oxidation potential have not been reported in other marine environments. Through metagenomic sequencing, assembly and binning, nine metagenome-assembled genomes belonging to <em>Nitrospirota</em> are recovered from sediment of different depths in the polymetallic nodule area. Through the key functional genes annotation results, we find that these <em>Nitrospirota</em> have limited potential to oxidize organic carbon because of incomplete tricarboxylic acid cycle and most of them (6/9) have carbon dioxide fixation potential through different pathway (rTCA, WL or CBB). One MAG belongs to order <em>Nitrospirales</em> has the potential to use manganese oxidation to obtain energy for carbon fixation. In addition to manganese ions, the oxidation of inorganic nitrogen, sulfur, hydrogen and carbon monoxide may also provide energy for the growth of these <em>Nitrospirota</em>. In addition, different metal ion transport systems can help those <em>Nitrospirota</em> to resist heavy metal in sediment. Our work expands the understanding of the metabolic potential of <em>Nitrospirota</em> in sediment of polymetallic nodule region and may contributes to promoting the study of chemolithoautotrophic manganese oxidation.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"75 ","pages":"Article 101107"},"PeriodicalIF":1.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778724000254","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Previously studies have reported that MAGs (Metagenome-assembled genomes) belong to “Candidatus Manganitrophaceae” of phylum Nitrospirota with chemolithoautotrophic manganese oxidation potential exist in freshwater and hydrothermal environments. However, Nitrospirota members with chemolithoautotrophic manganese oxidation potential have not been reported in other marine environments. Through metagenomic sequencing, assembly and binning, nine metagenome-assembled genomes belonging to Nitrospirota are recovered from sediment of different depths in the polymetallic nodule area. Through the key functional genes annotation results, we find that these Nitrospirota have limited potential to oxidize organic carbon because of incomplete tricarboxylic acid cycle and most of them (6/9) have carbon dioxide fixation potential through different pathway (rTCA, WL or CBB). One MAG belongs to order Nitrospirales has the potential to use manganese oxidation to obtain energy for carbon fixation. In addition to manganese ions, the oxidation of inorganic nitrogen, sulfur, hydrogen and carbon monoxide may also provide energy for the growth of these Nitrospirota. In addition, different metal ion transport systems can help those Nitrospirota to resist heavy metal in sediment. Our work expands the understanding of the metabolic potential of Nitrospirota in sediment of polymetallic nodule region and may contributes to promoting the study of chemolithoautotrophic manganese oxidation.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.