Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy.

Cell metabolism Pub Date : 2024-05-07 Epub Date: 2024-03-20 DOI:10.1016/j.cmet.2024.02.015
Haikuo Li, Dian Li, Nicolas Ledru, Qiao Xuanyuan, Haojia Wu, Amish Asthana, Lori N Byers, Stefan G Tullius, Giuseppe Orlando, Sushrut S Waikar, Benjamin D Humphreys
{"title":"Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy.","authors":"Haikuo Li, Dian Li, Nicolas Ledru, Qiao Xuanyuan, Haojia Wu, Amish Asthana, Lori N Byers, Stefan G Tullius, Giuseppe Orlando, Sushrut S Waikar, Benjamin D Humphreys","doi":"10.1016/j.cmet.2024.02.015","DOIUrl":null,"url":null,"abstract":"<p><p>A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"1105-1125.e10"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.02.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.

Abstract Image

转录组学、表观基因组学和空间代谢组学细胞剖析重新定义了区域人类肾脏解剖学。
目前还缺乏包括主要肾脏区域的大规模多模态图谱。在这里,我们采用了高通量单细胞ATAC/RNA测序(SHARE-seq)和空间分辨代谢组学方法,对来自不同肾脏解剖区域的54份人体样本进行了分析。我们生成了 446267 个细胞的转录组和 401875 个细胞的染色质可及性图谱,并开发了一个软件包来分析 408218 个空间解析代谢组。我们发现,同一类型的细胞,包括薄肢细胞、亨列升支粗环细胞和主细胞,会因解剖位置的不同而显示出不同的转录组、染色质可及性和代谢组特征。对代谢相关基因图谱的调查显示,肾小管节段之间的代谢特征并不重叠,患病的近端肾小管(PT)细胞脂质代谢紊乱。将多模态全息图学与临床数据相结合,发现PLEKHA1是一种疾病标志物,体外敲除PLEKHA1可增加PT分化过程中的基因表达,这表明PLEKHA1可能具有致病作用。这项研究凸显了以前未被充分反映的人类肾脏解剖学基础细胞异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信