Enhancing patient outcomes: the role of clinical utility in guiding healthcare providers in curating radiology AI applications.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2024-03-07 eCollection Date: 2024-01-01 DOI:10.3389/fdgth.2024.1359383
Franziska Lobig, Jacob Graham, Apeksha Damania, Brian Sattin, Joana Reis, Prateek Bharadwaj
{"title":"Enhancing patient outcomes: the role of clinical utility in guiding healthcare providers in curating radiology AI applications.","authors":"Franziska Lobig, Jacob Graham, Apeksha Damania, Brian Sattin, Joana Reis, Prateek Bharadwaj","doi":"10.3389/fdgth.2024.1359383","DOIUrl":null,"url":null,"abstract":"<p><p>With advancements in artificial intelligence (AI) dominating the headlines, diagnostic imaging radiology is no exception to the accelerating role that AI is playing in today's technology landscape. The number of AI-driven radiology diagnostic imaging applications (digital diagnostics) that are both commercially available and in-development is rapidly expanding as are the potential benefits these tools can deliver for patients and providers alike. Healthcare providers seeking to harness the potential benefits of digital diagnostics may consider evaluating these tools and their corresponding use cases in a systematic and structured manner to ensure optimal capital deployment, resource utilization, and, ultimately, patient outcomes-or clinical utility. We propose several guiding themes when using clinical utility to curate digital diagnostics.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"6 ","pages":"1359383"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10955074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2024.1359383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

With advancements in artificial intelligence (AI) dominating the headlines, diagnostic imaging radiology is no exception to the accelerating role that AI is playing in today's technology landscape. The number of AI-driven radiology diagnostic imaging applications (digital diagnostics) that are both commercially available and in-development is rapidly expanding as are the potential benefits these tools can deliver for patients and providers alike. Healthcare providers seeking to harness the potential benefits of digital diagnostics may consider evaluating these tools and their corresponding use cases in a systematic and structured manner to ensure optimal capital deployment, resource utilization, and, ultimately, patient outcomes-or clinical utility. We propose several guiding themes when using clinical utility to curate digital diagnostics.

提高患者疗效:临床实用性在指导医疗服务提供者策划放射学人工智能应用中的作用。
人工智能(AI)的发展占据了各大媒体的头条,放射诊断成像技术也不例外,人工智能在当今的技术领域正扮演着越来越重要的角色。人工智能驱动的放射诊断成像应用(数字诊断)的数量正在迅速增加,这些应用既有商业化的,也有正在开发中的,而这些工具能为患者和医疗服务提供者带来的潜在益处也在迅速扩大。医疗服务提供商在寻求利用数字诊断学的潜在优势时,可以考虑以系统化和结构化的方式评估这些工具及其相应的用例,以确保最佳的资本部署、资源利用,并最终实现患者的治疗效果或临床效用。在利用临床效用来策划数字诊断时,我们提出了几个指导性主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信