Cellular mechanotransduction of human osteoblasts in microgravity.

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
Nadab H Wubshet, Grace Cai, Samuel J Chen, Molly Sullivan, Mark Reeves, David Mays, Morgan Harrison, Paul Varnado, Benjamin Yang, Esmeralda Arreguin-Martinez, Yunjia Qu, Shan-Shan Lin, Pamela Duran, Carlos Aguilar, Shelby Giza, Twyman Clements, Allen P Liu
{"title":"Cellular mechanotransduction of human osteoblasts in microgravity.","authors":"Nadab H Wubshet, Grace Cai, Samuel J Chen, Molly Sullivan, Mark Reeves, David Mays, Morgan Harrison, Paul Varnado, Benjamin Yang, Esmeralda Arreguin-Martinez, Yunjia Qu, Shan-Shan Lin, Pamela Duran, Carlos Aguilar, Shelby Giza, Twyman Clements, Allen P Liu","doi":"10.1038/s41526-024-00386-4","DOIUrl":null,"url":null,"abstract":"<p><p>Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"35"},"PeriodicalIF":4.4000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00386-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.

微重力条件下人类成骨细胞的细胞机械传导。
宇航员在太空中长时间停留会导致骨质快速流失,因此国际空间站(ISS)是研究骨质疏松症的理想实验室,因为在国际空间站上骨质流失的速度会加快。这就提出了一个问题:零重力导致的负荷不足是如何传播到成骨细胞--人类胎儿成骨细胞(hFOBs)--并改变它们的矿化成熟过程的?在这里,我们旨在研究在微重力条件下发生骨质流失的机械传导机制。我们在国际空间站国家实验室部署的立方体实验室(CubeLab)中分别集成了两个自动化实验,一个是能够通过抽吸测量单细胞力学的微流控芯片,另一个是在压力控制腔中培养的细胞球。在第一项实验中,我们报告了在国际空间站暴露于微重力环境后对吸入细胞的突出测量结果,并将这些结果与在立方实验室内进行的地面控制结果进行了比较。我们发现,与地面样本相比,太空样本的突起略微拉长,这表明 hFOB 细胞在微重力环境下发生了软化。在第二项实验中,我们将成骨细胞球体封装在胶原凝胶中,并将样本放在压力控制舱中培养。我们发现,微重力大大降低了 hFOB 球形细胞中的丝状肌动蛋白水平。当受到压力时,无论微重力条件如何,球体都表现出 pSMAD1/5/9 表达的增加。此外,微重力降低了YAP的表达,而压力则增加了YAP的水平,从而恢复了微重力下球体的YAP表达。我们的研究有助于深入了解微重力对骨细胞机械特性的影响以及压缩压力对太空中细胞信号传导的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信