{"title":"Lactate dehydrogenase A is implicated in the pathogenesis of B-cell lymphoma through regulation of the FER signaling pathway","authors":"Xiumei Feng, Jing Ren, Xunqi Zhang, Dexiao Kong, Linlin Yin, Qian Zhou, Shunye Wang, Ai Li, Yanan Guo, Yongjing Wang, Xiaoli Feng, Xiaoyun Wang, Jianhua Niu, Yang Jiang, Chengyun Zheng","doi":"10.1002/biof.2053","DOIUrl":null,"url":null,"abstract":"<p>Lactate dehydrogenase A (LDHA) is highly expressed in various tumors. However, the role of LDHA in the pathogenesis of B-cell lymphoma remains unclear. Analysis of data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases revealed an elevated LDHA expression in diffuse large B-cell lymphoma (DLBC) tissues compared with normal tissues. Similarly, our results demonstrated a significant increase in LDHA expression in tumor tissues from the patients with B-cell lymphoma compared with those with lymphadenitis. To further elucidate potential roles of LDHA in B-cell lymphoma pathogenesis, we silenced LDHA in the Raji cells (a B-cell lymphoma cell line) using shRNA techniques. Silencing LDHA led to reduced mitochondrial membrane integrity, adenosine triphosphate (ATP) production, glycolytic activity, cell viability and invasion. Notably, LDHA knockdown substantially suppressed in vivo growth of Raji cells and extended survival in mice bearing lymphoma (Raji cells). Moreover, proteomic analysis identified feline sarcoma-related protein (FER) as a differential protein positively associated with LDHA expression. Treatment with E260, a FER inhibitor, significantly reduced the metabolism, proliferation and invasion of Raji cells. In summary, our findings highlight that LDHA plays multiple roles in B-cell lymphoma pathogenesis via FER pathways, establishing LDHA/FER may as a potential therapeutic target.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biof.2053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactate dehydrogenase A (LDHA) is highly expressed in various tumors. However, the role of LDHA in the pathogenesis of B-cell lymphoma remains unclear. Analysis of data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases revealed an elevated LDHA expression in diffuse large B-cell lymphoma (DLBC) tissues compared with normal tissues. Similarly, our results demonstrated a significant increase in LDHA expression in tumor tissues from the patients with B-cell lymphoma compared with those with lymphadenitis. To further elucidate potential roles of LDHA in B-cell lymphoma pathogenesis, we silenced LDHA in the Raji cells (a B-cell lymphoma cell line) using shRNA techniques. Silencing LDHA led to reduced mitochondrial membrane integrity, adenosine triphosphate (ATP) production, glycolytic activity, cell viability and invasion. Notably, LDHA knockdown substantially suppressed in vivo growth of Raji cells and extended survival in mice bearing lymphoma (Raji cells). Moreover, proteomic analysis identified feline sarcoma-related protein (FER) as a differential protein positively associated with LDHA expression. Treatment with E260, a FER inhibitor, significantly reduced the metabolism, proliferation and invasion of Raji cells. In summary, our findings highlight that LDHA plays multiple roles in B-cell lymphoma pathogenesis via FER pathways, establishing LDHA/FER may as a potential therapeutic target.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.