The standard model effective field theory at work

IF 45.9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Gino Isidori, Felix Wilsch, Daniel Wyler
{"title":"The standard model effective field theory at work","authors":"Gino Isidori, Felix Wilsch, Daniel Wyler","doi":"10.1103/revmodphys.96.015006","DOIUrl":null,"url":null,"abstract":"The striking success of the standard model in explaining precision data and, at the same time, its lack of explanations for various fundamental phenomena, such as dark matter and the baryon asymmetry of the Universe, suggest new physics at an energy scale that greatly exceeds the electroweak scale. In the absence of a short-range–long-range conspiracy, the standard model can be viewed as the leading term of an effective “remnant” theory (referred to as the SMEFT) of a more fundamental structure. In recent years, many aspects of the SMEFT have been investigated, and it has become a standard tool for analyzing experimental results in an integral way. In this review, after a presentation of the salient features of the standard model, the construction of the SMEFT is reviewed. The range of its applicability and bounds on its coefficients imposed by general theoretical considerations are discussed. Since new-physics models are likely to exhibit exact or approximate accidental global symmetries, especially in the flavor sector, their implications for the SMEFT are also discussed. The main focus of the review is the phenomenological analysis of experimental results. How to use various effective field theories to study the phenomenology of theories beyond the standard model is explicitly shown. Descriptions of the matching procedure and the use of the renormalization group equations are given, allowing one to connect multiple effective theories that are valid at different energy scales. Explicit examples from low-energy experiments and from high-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>p</mi><mi>T</mi></msub></math> physics illustrate the workflow. Also commented upon are the nonlinear realization of electroweak symmetry breaking and its phenomenological implications.","PeriodicalId":21172,"journal":{"name":"Reviews of Modern Physics","volume":null,"pages":null},"PeriodicalIF":45.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/revmodphys.96.015006","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The striking success of the standard model in explaining precision data and, at the same time, its lack of explanations for various fundamental phenomena, such as dark matter and the baryon asymmetry of the Universe, suggest new physics at an energy scale that greatly exceeds the electroweak scale. In the absence of a short-range–long-range conspiracy, the standard model can be viewed as the leading term of an effective “remnant” theory (referred to as the SMEFT) of a more fundamental structure. In recent years, many aspects of the SMEFT have been investigated, and it has become a standard tool for analyzing experimental results in an integral way. In this review, after a presentation of the salient features of the standard model, the construction of the SMEFT is reviewed. The range of its applicability and bounds on its coefficients imposed by general theoretical considerations are discussed. Since new-physics models are likely to exhibit exact or approximate accidental global symmetries, especially in the flavor sector, their implications for the SMEFT are also discussed. The main focus of the review is the phenomenological analysis of experimental results. How to use various effective field theories to study the phenomenology of theories beyond the standard model is explicitly shown. Descriptions of the matching procedure and the use of the renormalization group equations are given, allowing one to connect multiple effective theories that are valid at different energy scales. Explicit examples from low-energy experiments and from high-pT physics illustrate the workflow. Also commented upon are the nonlinear realization of electroweak symmetry breaking and its phenomenological implications.

Abstract Image

标准模型有效场理论的工作原理
标准模型在解释精确数据方面取得了惊人的成功,与此同时,它却无法解释各种基本现象,如暗物质和宇宙的重子不对称性,这表明新物理学的能量尺度大大超过了电弱尺度。在缺乏短程-长程共谋的情况下,标准模型可以被看作是更基本结构的有效 "残余 "理论(简称为 SMEFT)的前导项。近年来,人们对 SMEFT 的许多方面进行了研究,它已成为综合分析实验结果的标准工具。在这篇综述中,在介绍了标准模型的突出特点之后,回顾了 SMEFT 的构造。讨论了其适用范围和一般理论考虑对其系数施加的限制。由于新物理模型很可能表现出精确或近似的偶然全局对称性,特别是在味道部门,因此也讨论了它们对 SMEFT 的影响。综述的重点是对实验结果的现象学分析。明确展示了如何利用各种有效场理论来研究标准模型之外理论的现象学。文章描述了匹配程序和重正化群方程的使用,使人们能够连接在不同能量尺度上有效的多种有效理论。来自低能实验和高 pT 物理学的明确示例说明了工作流程。此外,还评论了电弱对称破缺的非线性实现及其现象学影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews of Modern Physics
Reviews of Modern Physics 物理-物理:综合
CiteScore
76.20
自引率
0.70%
发文量
30
期刊介绍: Reviews of Modern Physics (RMP) stands as the world's foremost physics review journal and is the most extensively cited publication within the Physical Review collection. Authored by leading international researchers, RMP's comprehensive essays offer exceptional coverage of a topic, providing context and background for contemporary research trends. Since 1929, RMP has served as an unparalleled platform for authoritative review papers across all physics domains. The journal publishes two types of essays: Reviews and Colloquia. Review articles deliver the present state of a given topic, including historical context, a critical synthesis of research progress, and a summary of potential future developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信