Effects of Gelsemium elegans extract on the red fire ant: disruption of peritrophic membrane integrity and alteration of gut microbial diversity, composition, and function
{"title":"Effects of Gelsemium elegans extract on the red fire ant: disruption of peritrophic membrane integrity and alteration of gut microbial diversity, composition, and function","authors":"Qun Zheng, Wenjuan Yan, Shiqi Zhu, Xiaoran Miao, Jian Wu, Zewei Lin, Suqing Huang, Dongmei Cheng, Hanhong Xu, Zhixiang Zhang, Peiwen Zhang","doi":"10.1007/s10340-024-01769-y","DOIUrl":null,"url":null,"abstract":"<p><i>Gelsemium elegans</i> Benth. (<i>Loganiaceae</i>), also known as heartbreak herb, can be used in the manufacture of herbal medicines. Insecticidal activity has also been found and can be used to develop botanical insecticides. This study aimed to reveal the insecticidal mechanism of its extracts against red fire ants and provide strategies for the development of biopesticides and the promotion of green and sustainable agriculture. 16s rRNA, pathohistological, behavioral, and enzyme activity assays were performed to reveal its biological effects, including the effects on non-target organisms. Our results showed that red fire ants exposed to <i>G. elegans</i> extracts exhibited slowed growth, reduced feeding, and decreased aggressiveness. The midgut and its peritrophic membrane of red fire ant were significantly disrupted, the diversity of gut microbial community was reduced, and the balance of microbial composition was disturbed. Significant increases in functional abundance of xenobiotics biodegradation and metabolism pathway and P450s enzyme activity confirmed the toxic stress of <i>G. elegans</i> extract. Functional prediction of Kyoto Encyclopedia of Genes and Genomes pathway showed that the functional abundance of novobiocin biosynthesis, flavonoid biosynthesis, lysosome, proteasome, and wingless/integrated signaling pathways were significantly inhibited in the gut. Besides, <i>G. elegans</i> extracts induced an increase in acetylcholinesterase activity. These results revealed dysregulation of immune system and metabolic functions in red fire ants, as well as toxic effects of <i>G. elegans</i> extracts on physiological functions and nerves. These findings revealed the insecticidal mechanism of <i>G. elegans</i> and supported the development of eco-friendly insecticides for red fire ants.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01769-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gelsemium elegans Benth. (Loganiaceae), also known as heartbreak herb, can be used in the manufacture of herbal medicines. Insecticidal activity has also been found and can be used to develop botanical insecticides. This study aimed to reveal the insecticidal mechanism of its extracts against red fire ants and provide strategies for the development of biopesticides and the promotion of green and sustainable agriculture. 16s rRNA, pathohistological, behavioral, and enzyme activity assays were performed to reveal its biological effects, including the effects on non-target organisms. Our results showed that red fire ants exposed to G. elegans extracts exhibited slowed growth, reduced feeding, and decreased aggressiveness. The midgut and its peritrophic membrane of red fire ant were significantly disrupted, the diversity of gut microbial community was reduced, and the balance of microbial composition was disturbed. Significant increases in functional abundance of xenobiotics biodegradation and metabolism pathway and P450s enzyme activity confirmed the toxic stress of G. elegans extract. Functional prediction of Kyoto Encyclopedia of Genes and Genomes pathway showed that the functional abundance of novobiocin biosynthesis, flavonoid biosynthesis, lysosome, proteasome, and wingless/integrated signaling pathways were significantly inhibited in the gut. Besides, G. elegans extracts induced an increase in acetylcholinesterase activity. These results revealed dysregulation of immune system and metabolic functions in red fire ants, as well as toxic effects of G. elegans extracts on physiological functions and nerves. These findings revealed the insecticidal mechanism of G. elegans and supported the development of eco-friendly insecticides for red fire ants.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.