Meysam Mahmoodabadi , Farzam Yamini-Fard , Mohammad Tatar , Ahmad Rashidi
{"title":"Post-collisional lithospheric delamination in eastern Iran, revealed by non-linear teleseismic tomography and residual topography","authors":"Meysam Mahmoodabadi , Farzam Yamini-Fard , Mohammad Tatar , Ahmad Rashidi","doi":"10.1016/j.pepi.2024.107180","DOIUrl":null,"url":null,"abstract":"<div><p>The Eastern Iranian Mountain Ranges (EIR) emerged as a consequence of the Late Cretaceous collision between the Afghan and Lut blocks. However, the response of the uppermost mantle to this collision remains enigmatic. Additionally, although petrological evidence suggests that post-collisional delamination is possible, it has not been conclusively identified in prior regional seismic imagery. This observation leads us to further explore this possibility using a dense seismic network. To gain insight into the geodynamic implications for eastern Iran and address knowledge gaps, we extensively investigated the seismic structure of the uppermost mantle beneath the EIR using a dense seismic network of 34 temporary stations, complemented by data from nine additional local permanent stations. By meticulously analyzing 6589 relative arrival time residuals from teleseismic records with favorable signal-to-noise ratios, we applied a non-linear tomography method to map <em>P</em>-wave velocity perturbations in a relative sense. Our tomographic images unveiled distinct instances of rapid high-velocity anomalies beneath low-velocity regions in the shallow mantle, suggesting the potential occurrence of lithospheric dripping, followed by subsequent asthenospheric upwelling. This observation offers a plausible explanation for the observed post-collisional magmatism over the Lut Block. Furthermore, to maintain the approximately 1.5-km positive residual topography across the EIR, beyond the influence of crustal properties, additional support from the hot and buoyant asthenosphere becomes crucial, particularly in the absence of a substantial lithospheric mantle.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"351 ","pages":"Article 107180"},"PeriodicalIF":2.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124000384","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Eastern Iranian Mountain Ranges (EIR) emerged as a consequence of the Late Cretaceous collision between the Afghan and Lut blocks. However, the response of the uppermost mantle to this collision remains enigmatic. Additionally, although petrological evidence suggests that post-collisional delamination is possible, it has not been conclusively identified in prior regional seismic imagery. This observation leads us to further explore this possibility using a dense seismic network. To gain insight into the geodynamic implications for eastern Iran and address knowledge gaps, we extensively investigated the seismic structure of the uppermost mantle beneath the EIR using a dense seismic network of 34 temporary stations, complemented by data from nine additional local permanent stations. By meticulously analyzing 6589 relative arrival time residuals from teleseismic records with favorable signal-to-noise ratios, we applied a non-linear tomography method to map P-wave velocity perturbations in a relative sense. Our tomographic images unveiled distinct instances of rapid high-velocity anomalies beneath low-velocity regions in the shallow mantle, suggesting the potential occurrence of lithospheric dripping, followed by subsequent asthenospheric upwelling. This observation offers a plausible explanation for the observed post-collisional magmatism over the Lut Block. Furthermore, to maintain the approximately 1.5-km positive residual topography across the EIR, beyond the influence of crustal properties, additional support from the hot and buoyant asthenosphere becomes crucial, particularly in the absence of a substantial lithospheric mantle.
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.