Multidimensional fuzzy sets: Negations and an algorithm for multi-attribute group decision making

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Landerson Santiago , Benjamin Bedregal
{"title":"Multidimensional fuzzy sets: Negations and an algorithm for multi-attribute group decision making","authors":"Landerson Santiago ,&nbsp;Benjamin Bedregal","doi":"10.1016/j.ijar.2024.109171","DOIUrl":null,"url":null,"abstract":"<div><p>Multidimensional fuzzy sets (MFS) is a new extension of fuzzy sets on which the membership values of an element in the universe of discourse are increasingly ordered vectors on the set of real numbers in the interval <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. This paper aims to investigate fuzzy negations on the set of increasingly ordered vectors on <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, i.e. on <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span>, MFN in short, with respect to some partial order. In this paper we study partial orders, giving special attention to admissible orders on <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span>. In addition, we study the possibility of existence of strong multidimensional fuzzy negations and some properties and methods to construct such operators. In particular, we define the ordinal sums of n-dimensional negations and ordinal sums of multidimensional fuzzy negations on a multidimensional product order. A multi-attribute group decision making algorithm is presented.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"169 ","pages":"Article 109171"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24000586","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multidimensional fuzzy sets (MFS) is a new extension of fuzzy sets on which the membership values of an element in the universe of discourse are increasingly ordered vectors on the set of real numbers in the interval [0,1]. This paper aims to investigate fuzzy negations on the set of increasingly ordered vectors on [0,1], i.e. on L([0,1]), MFN in short, with respect to some partial order. In this paper we study partial orders, giving special attention to admissible orders on Ln([0,1]) and L([0,1]). In addition, we study the possibility of existence of strong multidimensional fuzzy negations and some properties and methods to construct such operators. In particular, we define the ordinal sums of n-dimensional negations and ordinal sums of multidimensional fuzzy negations on a multidimensional product order. A multi-attribute group decision making algorithm is presented.

多维模糊集:多属性群体决策的否定和算法
多维模糊集(MFS)是模糊集的一个新扩展,在这个新扩展上,论域中某一元素的成员值是区间[0,1]实数集合上越来越有序的向量。本文旨在研究[0,1]上越来越有序的向量集合(即 L∞([0,1]),简称 MFN)上关于某些偏序的模糊否定。本文研究偏序,特别关注 Ln([0,1]) 和 L∞([0,1]) 上的可容许序。此外,我们还研究了强多维模糊否定存在的可能性,以及构造这类算子的一些性质和方法。特别是,我们定义了 n 维否定的序数和以及多维积序上的多维模糊否定的序数和。我们还提出了一种多属性群体决策算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信