Dielectric barrier discharge actuators: Momentum injection into co-flow and counter-flow freestream

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Anthony Tang , Nathan Li , Benjamin Price , Alexander Mamishev , Alberto Aliseda , Igor Novosselov
{"title":"Dielectric barrier discharge actuators: Momentum injection into co-flow and counter-flow freestream","authors":"Anthony Tang ,&nbsp;Nathan Li ,&nbsp;Benjamin Price ,&nbsp;Alexander Mamishev ,&nbsp;Alberto Aliseda ,&nbsp;Igor Novosselov","doi":"10.1016/j.elstat.2024.103918","DOIUrl":null,"url":null,"abstract":"<div><p>In a quiescent environment, dielectric barrier discharge (DBD) plasma actuators generate a wall jet through the interaction of ionized and neutral molecules in an electric field. In external flow, the coupling between electrohydrodynamic (EHD), turbulence, inertial, and viscous effects in the flow boundary layer is more complex and requires additional investigation. We experimentally study momentum injection by DBD actuators into the free stream flow with Re = 35,000 and 75,000 in co-flow and counter-flow scenarios over a range of V<sub>AC</sub> = 12 kV–19.5 kV peak-to-peak at a frequency of 2 kHz. In co-flow, the momentum injection leads to boundary layer thinning and fluid entrainment from the freestream into the DBD forcing region, while in the counter-flow configuration, flow separation can occur. A separation bubble is observed at Re = 35,000 for the tested condition. The momentum difference in the counter-flow configuration is six times greater than the EHD jet momentum in a quiescent environment. Both co-flow and counter-flow momentum injections show diminishing effects with higher Re. We show that the resulting flow pattern is not a superposition of the EHD jet and the free stream but is determined by the coupling and competition of inertial, viscous, and Coulombic effects between the EHD-driven forcing and the external flow. The proposed non-dimensional momentum ratio (M*) of EHD jet momentum to momentum in the external flow boundary layer can be used to predict the onset of separation; however, additional experimental and numerical studies are required to generalize this concept to other flow scenarios. The velocity profiles and momentum measurements presented here can be used to validate numerical models and inform the design of DBD actuators for active flow control.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"129 ","pages":"Article 103918"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388624000251","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In a quiescent environment, dielectric barrier discharge (DBD) plasma actuators generate a wall jet through the interaction of ionized and neutral molecules in an electric field. In external flow, the coupling between electrohydrodynamic (EHD), turbulence, inertial, and viscous effects in the flow boundary layer is more complex and requires additional investigation. We experimentally study momentum injection by DBD actuators into the free stream flow with Re = 35,000 and 75,000 in co-flow and counter-flow scenarios over a range of VAC = 12 kV–19.5 kV peak-to-peak at a frequency of 2 kHz. In co-flow, the momentum injection leads to boundary layer thinning and fluid entrainment from the freestream into the DBD forcing region, while in the counter-flow configuration, flow separation can occur. A separation bubble is observed at Re = 35,000 for the tested condition. The momentum difference in the counter-flow configuration is six times greater than the EHD jet momentum in a quiescent environment. Both co-flow and counter-flow momentum injections show diminishing effects with higher Re. We show that the resulting flow pattern is not a superposition of the EHD jet and the free stream but is determined by the coupling and competition of inertial, viscous, and Coulombic effects between the EHD-driven forcing and the external flow. The proposed non-dimensional momentum ratio (M*) of EHD jet momentum to momentum in the external flow boundary layer can be used to predict the onset of separation; however, additional experimental and numerical studies are required to generalize this concept to other flow scenarios. The velocity profiles and momentum measurements presented here can be used to validate numerical models and inform the design of DBD actuators for active flow control.

介质阻挡放电致动器:向同流和逆流自由流注入动量
在静态环境中,介质阻挡放电(DBD)等离子体致动器通过电场中电离分子和中性分子的相互作用产生壁面射流。在外部流动中,流动边界层中的电流体动力(EHD)、湍流、惯性和粘性效应之间的耦合更为复杂,需要额外的研究。我们通过实验研究了 DBD 激励器在 Re = 35,000 和 75,000 的自由流中,在频率为 2 kHz 的 VAC = 12 kV-19.5 kV 峰峰值范围内,在同流和逆流情况下的动量注入。在同流情况下,动量注入导致边界层变薄,流体从自由流夹带到 DBD 强制区,而在逆流配置中,可能会发生流动分离。在 Re = 35,000 试验条件下观察到分离气泡。逆流配置中的动量差是静态环境下 EHD 喷射动量的六倍。随着 Re 值的升高,共流和逆流动量注入的效果都会减弱。我们的研究表明,由此产生的流动模式并不是 EHD 喷射和自由流的叠加,而是由 EHD 驱动力和外部流动之间的惯性、粘性和库仑效应的耦合和竞争决定的。所提出的 EHD 喷射动量与外部流边界层动量的非维度动量比 (M*) 可用来预测分离的发生;然而,要将这一概念推广到其他流动情况,还需要进行更多的实验和数值研究。本文介绍的速度剖面和动量测量结果可用于验证数值模型,并为主动流控制 DBD 驱动器的设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信