The torsion problem of the p-Bilaplacian

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Andrei Grecu , Mihai Mihăilescu
{"title":"The torsion problem of the p-Bilaplacian","authors":"Andrei Grecu ,&nbsp;Mihai Mihăilescu","doi":"10.1016/j.nonrwa.2024.104117","DOIUrl":null,"url":null,"abstract":"<div><p>For each bounded and open set <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) with smooth boundary denoted by <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span> and each real number <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> we analyze the torsion problem of the <span><math><mi>p</mi></math></span>-Bilaplacian, namely <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mi>Δ</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>Δ</mi><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> in <span><math><mi>Ω</mi></math></span> with <span><math><mrow><mi>u</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math></span> on <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>. Firstly, we show that for each <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> the problem has a unique weak solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Secondly, we prove that <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> converges uniformly, as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> to a certain function, say <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which is exactly the unique solution of the problem <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mn>1</mn></mrow></math></span> in <span><math><mi>Ω</mi></math></span> with <span><math><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math></span> on <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>. Moreover, for each real number <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span> converges strongly to <span><math><mrow><mi>Δ</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. Next, we show that each solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is also a solution for the minimization problem <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>p</mi><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow><mo>≔</mo><munder><mrow><mo>inf</mo></mrow><mrow><mi>u</mi><mo>∈</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></munder><mfrac><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>Δ</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi></mrow><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mspace></mspace><mi>d</mi><mi>x</mi></mrow></mfenced></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfrac><mspace></mspace></mrow></math></span> where <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>:</mo><mspace></mspace><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>a</mi><mo>.</mo><mi>e</mi><mo>.</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>}</mo></mrow></mrow></math></span>. Further, we show that the function <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>∋</mo><mi>p</mi><mo>↦</mo><mi>T</mi><mrow><mo>(</mo><mi>p</mi><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> is strictly increasing provided that <span><math><mi>Ω</mi></math></span> is a convex and bounded open set for which <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span> is small. Finally, using this monotonicity result, we give an alternative variational characterization of the constant <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>p</mi><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span> is small. That last variational characterization fails to hold true when <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000579","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For each bounded and open set ΩRN (N2) with smooth boundary denoted by Ω and each real number p(1,) we analyze the torsion problem of the p-Bilaplacian, namely Δ(|Δu|p2Δu)=1 in Ω with u=Δu=0 on Ω. Firstly, we show that for each p(1,) the problem has a unique weak solution up. Secondly, we prove that up converges uniformly, as p, in C1(Ω¯) to a certain function, say v2, which is exactly the unique solution of the problem Δu=1 in Ω with u=0 on Ω. Moreover, for each real number q[1,), Δup converges strongly to Δv2 in Lq(Ω), as p. Next, we show that each solution up is also a solution for the minimization problem T(p;Ω)infuXp(Ω){0}1|Ω|Ω|Δu|pdx1|Ω|Ωudxp where Xp(Ω){uW2,p(Ω)W01,p(Ω):u(x)0,a.e.xΩ}. Further, we show that the function (1,)pT(p;Ω) is strictly increasing provided that Ω is a convex and bounded open set for which |Ω|1Ωv2dx is small. Finally, using this monotonicity result, we give an alternative variational characterization of the constant T(p;Ω) when |Ω|1Ωv2dx is small. That last variational characterization fails to hold true when |Ω|1Ωv2dx>1.

p-Bilaplacian 的扭转问题
对于每个边界光滑的有界开集 Ω⊂RN (N≥2),用 ∂Ω 表示,对于每个实数 p∈(1,∞),我们分析 p-Bilaplacian 的扭转问题,即 Δ(|Δu|p-2Δu)=1 in Ω,u=Δu=0 on ∂Ω。首先,我们证明对于每个 p∈(1,∞),问题都有唯一的弱解 up。其次,我们证明 up 在 C1(Ω¯)中随着 p→∞ 均匀地收敛于某个函数,比如 v2,它正是问题 -Δu=1 in Ω 的唯一解,且 u=0 on ∂Ω。此外,对于每个实数 q∈[1,∞),Δup 在 Lq(Ω)中强收敛于 Δv2,因为 p→∞。接下来,我们证明每个向上的解也是最小化问题 T(p;Ω)≔infu∈Xp(Ω)∖{0}1|Ω|∫Ω|Δu|pdx1|Ω|∫Ωudxp 的解,其中 Xp(Ω)≔{u∈W2,p(Ω)∩W01,p(Ω):u(x)≥0,a.e.x∈Ω} 。此外,我们还证明了函数(1,∞)∋p↦T(p;Ω)是严格递增的,条件是Ω是一个凸的有界开集,且|Ω|-1∫Ωv2dx很小。最后,利用这一单调性结果,我们给出了当|Ω|-1∫Ωv2dx很小时常数T(p;Ω)的另一种变分特征。当|Ω|-1∫Ωv2dx>1时,最后一个变分特性不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信