The torsion problem of the p-Bilaplacian

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Andrei Grecu , Mihai Mihăilescu
{"title":"The torsion problem of the p-Bilaplacian","authors":"Andrei Grecu ,&nbsp;Mihai Mihăilescu","doi":"10.1016/j.nonrwa.2024.104117","DOIUrl":null,"url":null,"abstract":"<div><p>For each bounded and open set <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) with smooth boundary denoted by <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span> and each real number <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> we analyze the torsion problem of the <span><math><mi>p</mi></math></span>-Bilaplacian, namely <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mi>Δ</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>Δ</mi><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> in <span><math><mi>Ω</mi></math></span> with <span><math><mrow><mi>u</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math></span> on <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>. Firstly, we show that for each <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> the problem has a unique weak solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>. Secondly, we prove that <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> converges uniformly, as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> to a certain function, say <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, which is exactly the unique solution of the problem <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mn>1</mn></mrow></math></span> in <span><math><mi>Ω</mi></math></span> with <span><math><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math></span> on <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>. Moreover, for each real number <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></math></span> converges strongly to <span><math><mrow><mi>Δ</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. Next, we show that each solution <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> is also a solution for the minimization problem <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>p</mi><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow><mo>≔</mo><munder><mrow><mo>inf</mo></mrow><mrow><mi>u</mi><mo>∈</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></munder><mfrac><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>Δ</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi></mrow><mrow><msup><mrow><mfenced><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mspace></mspace><mi>d</mi><mi>x</mi></mrow></mfenced></mrow><mrow><mi>p</mi></mrow></msup></mrow></mfrac><mspace></mspace></mrow></math></span> where <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>:</mo><mspace></mspace><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>a</mi><mo>.</mo><mi>e</mi><mo>.</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>}</mo></mrow></mrow></math></span>. Further, we show that the function <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>∋</mo><mi>p</mi><mo>↦</mo><mi>T</mi><mrow><mo>(</mo><mi>p</mi><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> is strictly increasing provided that <span><math><mi>Ω</mi></math></span> is a convex and bounded open set for which <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span> is small. Finally, using this monotonicity result, we give an alternative variational characterization of the constant <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>p</mi><mo>;</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> when <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi></mrow></math></span> is small. That last variational characterization fails to hold true when <span><math><mrow><msup><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mspace></mspace><mi>d</mi><mi>x</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000579","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For each bounded and open set ΩRN (N2) with smooth boundary denoted by Ω and each real number p(1,) we analyze the torsion problem of the p-Bilaplacian, namely Δ(|Δu|p2Δu)=1 in Ω with u=Δu=0 on Ω. Firstly, we show that for each p(1,) the problem has a unique weak solution up. Secondly, we prove that up converges uniformly, as p, in C1(Ω¯) to a certain function, say v2, which is exactly the unique solution of the problem Δu=1 in Ω with u=0 on Ω. Moreover, for each real number q[1,), Δup converges strongly to Δv2 in Lq(Ω), as p. Next, we show that each solution up is also a solution for the minimization problem T(p;Ω)infuXp(Ω){0}1|Ω|Ω|Δu|pdx1|Ω|Ωudxp where Xp(Ω){uW2,p(Ω)W01,p(Ω):u(x)0,a.e.xΩ}. Further, we show that the function (1,)pT(p;Ω) is strictly increasing provided that Ω is a convex and bounded open set for which |Ω|1Ωv2dx is small. Finally, using this monotonicity result, we give an alternative variational characterization of the constant T(p;Ω) when |Ω|1Ωv2dx is small. That last variational characterization fails to hold true when |Ω|1Ωv2dx>1.

p-Bilaplacian 的扭转问题
对于每个边界光滑的有界开集 Ω⊂RN (N≥2),用 ∂Ω 表示,对于每个实数 p∈(1,∞),我们分析 p-Bilaplacian 的扭转问题,即 Δ(|Δu|p-2Δu)=1 in Ω,u=Δu=0 on ∂Ω。首先,我们证明对于每个 p∈(1,∞),问题都有唯一的弱解 up。其次,我们证明 up 在 C1(Ω¯)中随着 p→∞ 均匀地收敛于某个函数,比如 v2,它正是问题 -Δu=1 in Ω 的唯一解,且 u=0 on ∂Ω。此外,对于每个实数 q∈[1,∞),Δup 在 Lq(Ω)中强收敛于 Δv2,因为 p→∞。接下来,我们证明每个向上的解也是最小化问题 T(p;Ω)≔infu∈Xp(Ω)∖{0}1|Ω|∫Ω|Δu|pdx1|Ω|∫Ωudxp 的解,其中 Xp(Ω)≔{u∈W2,p(Ω)∩W01,p(Ω):u(x)≥0,a.e.x∈Ω} 。此外,我们还证明了函数(1,∞)∋p↦T(p;Ω)是严格递增的,条件是Ω是一个凸的有界开集,且|Ω|-1∫Ωv2dx很小。最后,利用这一单调性结果,我们给出了当|Ω|-1∫Ωv2dx很小时常数T(p;Ω)的另一种变分特征。当|Ω|-1∫Ωv2dx>1时,最后一个变分特性不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信