Considerations for Detecting Organic Indicators of Metabolism on Enceladus.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2024-03-01 DOI:10.1089/ast.2023.0074
Laura M Barge, Gregory P Fournier
{"title":"Considerations for Detecting Organic Indicators of Metabolism on Enceladus.","authors":"Laura M Barge, Gregory P Fournier","doi":"10.1089/ast.2023.0074","DOIUrl":null,"url":null,"abstract":"<p><p>Enceladus is of interest to astrobiology and the search for life since it is thought to host active hydrothermal activity and habitable conditions. It is also possible that the organics detected on Enceladus may indicate an active prebiotic or biotic system; in particular, the conditions on Enceladus may favor mineral-driven protometabolic reactions. When including metabolism-related biosignatures in Enceladus mission concepts, it is necessary to base these in a clearer understanding of how these signatures could also be produced prebiotically. In addition, postulating which biological metabolisms to look for on Enceladus requires a non-Earth-centric approach since the details of biological metabolic pathways are heavily shaped by adaptation to geochemical conditions over the planet's history. Creating metabolism-related organic detection objectives for Enceladus missions, therefore, requires consideration of how metabolic systems may operate differently on another world, while basing these speculations on observed Earth-specific microbial processes. In addition, advances in origin-of-life research can play a critical role in distinguishing between interpretations of any future organic detections on Enceladus, and the discovery of an extant prebiotic system would be a transformative astrobiological event in its own right.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"24 3","pages":"328-338"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2023.0074","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Enceladus is of interest to astrobiology and the search for life since it is thought to host active hydrothermal activity and habitable conditions. It is also possible that the organics detected on Enceladus may indicate an active prebiotic or biotic system; in particular, the conditions on Enceladus may favor mineral-driven protometabolic reactions. When including metabolism-related biosignatures in Enceladus mission concepts, it is necessary to base these in a clearer understanding of how these signatures could also be produced prebiotically. In addition, postulating which biological metabolisms to look for on Enceladus requires a non-Earth-centric approach since the details of biological metabolic pathways are heavily shaped by adaptation to geochemical conditions over the planet's history. Creating metabolism-related organic detection objectives for Enceladus missions, therefore, requires consideration of how metabolic systems may operate differently on another world, while basing these speculations on observed Earth-specific microbial processes. In addition, advances in origin-of-life research can play a critical role in distinguishing between interpretations of any future organic detections on Enceladus, and the discovery of an extant prebiotic system would be a transformative astrobiological event in its own right.

检测恩克拉多斯新陈代谢有机指标的考虑因素。
土卫二对天体生物学和生命探索具有重要意义,因为它被认为具有活跃的热液活动和适宜居住的条件。在恩克拉多斯上探测到的有机物也有可能预示着一个活跃的前生物或生物系统;特别是,恩克拉多斯上的条件可能有利于矿物驱动的原代谢反应。在将与新陈代谢有关的生物特征纳入恩克拉多斯飞行任务概念时,有必要在更清楚地了解这些特征如何也能通过前生物产生的基础上进行。此外,由于生物新陈代谢途径的细节在很大程度上取决于对地球历史上地球化学条件的适应情况,因此要在恩克拉多斯星球上寻找哪些生物新陈代谢需要一种非地球中心的方法。因此,要为土卫六飞行任务制定与新陈代谢有关的有机物探测目标,就需要考虑新陈代谢系统在另一个世界的运行方式可能会有所不同,同时将这些推测建立在观测到的地球特有微生物过程的基础上。此外,生命起源研究的进展可以在区分对今后在恩克拉多斯上探测到的任何有机物的解释方面发挥关键作用,发现一个现存的前生物系统本身就是一个变革性的天体生物学事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信