{"title":"Early exercise intervention promotes myelin repair in the brains of ischemic rats by inhibiting the MEK/ERK pathway.","authors":"Junyi Wang, Xinyu Ding, Chen Li, Chuan Huang, Changkai Ke, Chunlei Xu, Chunxiao Wan","doi":"10.1515/tnsci-2022-0335","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous studies have shown that early exercise intervention after stroke increases neural activity and synaptic plasticity and promotes the recovery of nerve fiber bundle integrity in the brain. However, the effect of exercise on the repair of myelin in the brain and the related mechanism are still unclear. In this study, we randomly divided the rats into three groups. Before and after 28 days of intervention, body weight, nerve function, the infarct size, white matter fiber bundle integrity, and nerve myelin structure and function were observed by measuring body weight, analysis of modified neurological severity score, CatWalk gait analysis, MRI, luxol fast blue staining, immunofluorescence, and transmission electron microscopy. Changes in the expression of proteins in the MEK/ERK pathway were assessed. The results showed that early exercise intervention resulted in neurological recovery, decreased the infarct volume and increased nerve fiber integrity, the myelin coverage area, myelin basic protein (MBP) fluorescence intensity expression, and myelin thickness. Furthermore, the expression level of MBP was significantly increased after early exercise intervention, while the expression levels of p-MEK1/2 and p-ERK1/2 were significantly reduced. In the cell study, MBP expression levels were significantly higher in the oxygen and glucose deprivation and administration group.In summary, early exercise intervention after stroke can promote myelin repair by inhibiting the MEK/ERK signaling pathway.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"15 1","pages":"20220335"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0335","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Our previous studies have shown that early exercise intervention after stroke increases neural activity and synaptic plasticity and promotes the recovery of nerve fiber bundle integrity in the brain. However, the effect of exercise on the repair of myelin in the brain and the related mechanism are still unclear. In this study, we randomly divided the rats into three groups. Before and after 28 days of intervention, body weight, nerve function, the infarct size, white matter fiber bundle integrity, and nerve myelin structure and function were observed by measuring body weight, analysis of modified neurological severity score, CatWalk gait analysis, MRI, luxol fast blue staining, immunofluorescence, and transmission electron microscopy. Changes in the expression of proteins in the MEK/ERK pathway were assessed. The results showed that early exercise intervention resulted in neurological recovery, decreased the infarct volume and increased nerve fiber integrity, the myelin coverage area, myelin basic protein (MBP) fluorescence intensity expression, and myelin thickness. Furthermore, the expression level of MBP was significantly increased after early exercise intervention, while the expression levels of p-MEK1/2 and p-ERK1/2 were significantly reduced. In the cell study, MBP expression levels were significantly higher in the oxygen and glucose deprivation and administration group.In summary, early exercise intervention after stroke can promote myelin repair by inhibiting the MEK/ERK signaling pathway.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.