Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2024-04-10 Epub Date: 2024-03-19 DOI:10.1016/j.xgen.2024.100523
Buu Truong, Leland E Hull, Yunfeng Ruan, Qin Qin Huang, Whitney Hornsby, Hilary Martin, David A van Heel, Ying Wang, Alicia R Martin, S Hong Lee, Pradeep Natarajan
{"title":"Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases.","authors":"Buu Truong, Leland E Hull, Yunfeng Ruan, Qin Qin Huang, Whitney Hornsby, Hilary Martin, David A van Heel, Ying Wang, Alicia R Martin, S Hong Lee, Pradeep Natarajan","doi":"10.1016/j.xgen.2024.100523","DOIUrl":null,"url":null,"abstract":"<p><p>Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 × 10<sup>-5</sup>) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 × 10<sup>-6</sup>), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 × 10<sup>-6</sup>) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 × 10<sup>-7</sup>) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combination methods with scores from pre-defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27-fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 × 10<sup>-4</sup>). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100523"},"PeriodicalIF":11.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 × 10-5) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 × 10-6), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 × 10-6) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 × 10-7) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combination methods with scores from pre-defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27-fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 × 10-4). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.

综合多基因风险评分提高了复杂性状和疾病的预测准确性。
多基因风险评分(PRS)是预测个体临床表型和结果的新兴工具。我们提出了 PRSmix 和 PRSmix+,前者是一个利用目标性状的 PRS 语料库来提高预测准确性的框架,后者则纳入了遗传相关性状,以更好地捕捉欧洲和南亚血统中分别为 47 种和 32 种疾病/性状的人类遗传结构。PRSmix 的平均预测准确率提高了 1.20 倍(95% 置信区间 [CI],[1.10; 1.3];p = 9.17 × 10-5)和 1.19 倍(95% 置信区间 [CI],[1.11; 1.27];p = 1.92 × 10-6),PRSmix+则将欧洲血统和南亚血统的预测准确率分别提高了 1.72 倍(95% CI,[1.40; 2.04];p = 7.58 × 10-6)和 1.42 倍(95% CI,[1.25; 1.59];p = 8.01 × 10-7)。与之前使用预先定义的相关性状得分的交叉性状组合方法相比,我们的方法提高了冠心病的预测准确率达 3.27 倍(95% CI,[2.1; 4.44];经错误发现率 (FDR) 校正后的 p 值 = 2.6 × 10-4)。我们的方法提供了一个全面的框架,可对 PRS 的综合能力进行基准测试和利用,从而在所需的目标人群中实现最高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信