Chukwuebuka Joseph Ejiyi, Zhen Qin, Chiagoziem Chima Ukwuoma, Grace Ugochi Nneji, Happy Nkanta Monday, Makuachukwu Bennedith Ejiyi, Thomas Ugochukwu Ejiyi, Uchenna Okechukwu, Olusola O Bamisile
{"title":"Comparative performance analysis of Boruta, SHAP, and Borutashap for disease diagnosis: A study with multiple machine learning algorithms.","authors":"Chukwuebuka Joseph Ejiyi, Zhen Qin, Chiagoziem Chima Ukwuoma, Grace Ugochi Nneji, Happy Nkanta Monday, Makuachukwu Bennedith Ejiyi, Thomas Ugochukwu Ejiyi, Uchenna Okechukwu, Olusola O Bamisile","doi":"10.1080/0954898X.2024.2331506","DOIUrl":null,"url":null,"abstract":"<p><p>Interpretable machine learning models are instrumental in disease diagnosis and clinical decision-making, shedding light on relevant features. Notably, Boruta, SHAP (SHapley Additive exPlanations), and BorutaShap were employed for feature selection, each contributing to the identification of crucial features. These selected features were then utilized to train six machine learning algorithms, including LR, SVM, ETC, AdaBoost, RF, and LR, using diverse medical datasets obtained from public sources after rigorous preprocessing. The performance of each feature selection technique was evaluated across multiple ML models, assessing accuracy, precision, recall, and F1-score metrics. Among these, SHAP showcased superior performance, achieving average accuracies of 80.17%, 85.13%, 90.00%, and 99.55% across diabetes, cardiovascular, statlog, and thyroid disease datasets, respectively. Notably, the LGBM emerged as the most effective algorithm, boasting an average accuracy of 91.00% for most disease states. Moreover, SHAP enhanced the interpretability of the models, providing valuable insights into the underlying mechanisms driving disease diagnosis. This comprehensive study contributes significant insights into feature selection techniques and machine learning algorithms for disease diagnosis, benefiting researchers and practitioners in the medical field. Further exploration of feature selection methods and algorithms holds promise for advancing disease diagnosis methodologies, paving the way for more accurate and interpretable diagnostic models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-38"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2331506","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Interpretable machine learning models are instrumental in disease diagnosis and clinical decision-making, shedding light on relevant features. Notably, Boruta, SHAP (SHapley Additive exPlanations), and BorutaShap were employed for feature selection, each contributing to the identification of crucial features. These selected features were then utilized to train six machine learning algorithms, including LR, SVM, ETC, AdaBoost, RF, and LR, using diverse medical datasets obtained from public sources after rigorous preprocessing. The performance of each feature selection technique was evaluated across multiple ML models, assessing accuracy, precision, recall, and F1-score metrics. Among these, SHAP showcased superior performance, achieving average accuracies of 80.17%, 85.13%, 90.00%, and 99.55% across diabetes, cardiovascular, statlog, and thyroid disease datasets, respectively. Notably, the LGBM emerged as the most effective algorithm, boasting an average accuracy of 91.00% for most disease states. Moreover, SHAP enhanced the interpretability of the models, providing valuable insights into the underlying mechanisms driving disease diagnosis. This comprehensive study contributes significant insights into feature selection techniques and machine learning algorithms for disease diagnosis, benefiting researchers and practitioners in the medical field. Further exploration of feature selection methods and algorithms holds promise for advancing disease diagnosis methodologies, paving the way for more accurate and interpretable diagnostic models.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.