Erik Antonsen, Robert J Reynolds, Jacqueline Charvat, Erin Connell, Avalon Monti, Devan Petersen, Nicholas Nartey, Wilma Anton, Ahmed Abukmail, Kristina Marotta, Mary Van Baalen, Daniel M Buckland
{"title":"Causal diagramming for assessing human system risk in spaceflight.","authors":"Erik Antonsen, Robert J Reynolds, Jacqueline Charvat, Erin Connell, Avalon Monti, Devan Petersen, Nicholas Nartey, Wilma Anton, Ahmed Abukmail, Kristina Marotta, Mary Van Baalen, Daniel M Buckland","doi":"10.1038/s41526-024-00375-7","DOIUrl":null,"url":null,"abstract":"<p><p>For over a decade, the National Aeronautics and Space Administration (NASA) has tracked and configuration-managed approximately 30 risks that affect astronaut health and performance before, during and after spaceflight. The Human System Risk Board (HSRB) at NASA Johnson Space Center is responsible for setting the official risk posture for each of the human system risks and determining-based on evaluation of the available evidence-when that risk posture changes. The ultimate purpose of tracking and researching these risks is to find ways to reduce spaceflight-induced risk to astronauts. The adverse effects of spaceflight begin at launch and continue throughout the duration of the mission, and in some cases, across the lifetime of the astronaut. Historically, research has been conducted in individual risk \"silos\" to characterize risk, however, astronauts are exposed to all risks simultaneously. In January of 2020, the HSRB at NASA began assessing the potential value of causal diagramming as a tool to facilitate understanding of the complex causes and effects that contribute to spaceflight-induced human system risk. Causal diagrams in the form of directed acyclic graphs (DAGs) are used to provide HSRB stakeholders with a shared mental model of the causal flow of risk. While primarily improving communication among those stakeholders, DAGs also allow a composite risk network to be created that can be tracked and configuration managed. This paper outlines the HSRB's pilot process for this effort, the lessons learned, and future goals for data-driven risk management approaches.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00375-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For over a decade, the National Aeronautics and Space Administration (NASA) has tracked and configuration-managed approximately 30 risks that affect astronaut health and performance before, during and after spaceflight. The Human System Risk Board (HSRB) at NASA Johnson Space Center is responsible for setting the official risk posture for each of the human system risks and determining-based on evaluation of the available evidence-when that risk posture changes. The ultimate purpose of tracking and researching these risks is to find ways to reduce spaceflight-induced risk to astronauts. The adverse effects of spaceflight begin at launch and continue throughout the duration of the mission, and in some cases, across the lifetime of the astronaut. Historically, research has been conducted in individual risk "silos" to characterize risk, however, astronauts are exposed to all risks simultaneously. In January of 2020, the HSRB at NASA began assessing the potential value of causal diagramming as a tool to facilitate understanding of the complex causes and effects that contribute to spaceflight-induced human system risk. Causal diagrams in the form of directed acyclic graphs (DAGs) are used to provide HSRB stakeholders with a shared mental model of the causal flow of risk. While primarily improving communication among those stakeholders, DAGs also allow a composite risk network to be created that can be tracked and configuration managed. This paper outlines the HSRB's pilot process for this effort, the lessons learned, and future goals for data-driven risk management approaches.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.