Osmar Freitas, Paulo R A Campos, Sabrina B L Araujo
{"title":"Patch biogeography under intermittent barriers: macroevolutionary consequences of microevolutionary processes.","authors":"Osmar Freitas, Paulo R A Campos, Sabrina B L Araujo","doi":"10.1093/jeb/voae035","DOIUrl":null,"url":null,"abstract":"<p><p>The processes that generate biodiversity start on a microevolutionary scale, where each individual's history can impact the species' history. This manuscript presents a theoretical study that examines the macroevolutionary patterns that emerge from the microevolutionary dynamics of populations inhabiting two patches. The model is neutral, meaning that neither survival nor reproduction depends on a fixed genotype, yet individuals must have minimal genetic similarity to reproduce. We used historical sea level oscillation over the past 800 thousand years to hypothesize periods when individuals could migrate from one patch to another. In our study, we keep track of each speciation and extinction event, build the complete and extant phylogenies, and characterize the macroevolutionary patterns regarding phylogeny balance, acceleration of speciation, and crown age. We also evaluate ecological patterns: richness, beta diversity, and species distribution symmetry. The balance of the complete phylogeny can be a sign of the speciation mode, contrasting speciation induced by migration and isolation (vicariance). The acceleration of the speciation process is also affected by the geographical barriers and the duration of the isolation period, with high isolation times leading to accelerated speciation. We report the correlation between ecological and macroevolutionary patterns and show it decreases with the time spent in isolation. We discuss, in light of our results, the challenge of integrating present-time community ecology with macroevolutionary patterns.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"1488-1498"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae035","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The processes that generate biodiversity start on a microevolutionary scale, where each individual's history can impact the species' history. This manuscript presents a theoretical study that examines the macroevolutionary patterns that emerge from the microevolutionary dynamics of populations inhabiting two patches. The model is neutral, meaning that neither survival nor reproduction depends on a fixed genotype, yet individuals must have minimal genetic similarity to reproduce. We used historical sea level oscillation over the past 800 thousand years to hypothesize periods when individuals could migrate from one patch to another. In our study, we keep track of each speciation and extinction event, build the complete and extant phylogenies, and characterize the macroevolutionary patterns regarding phylogeny balance, acceleration of speciation, and crown age. We also evaluate ecological patterns: richness, beta diversity, and species distribution symmetry. The balance of the complete phylogeny can be a sign of the speciation mode, contrasting speciation induced by migration and isolation (vicariance). The acceleration of the speciation process is also affected by the geographical barriers and the duration of the isolation period, with high isolation times leading to accelerated speciation. We report the correlation between ecological and macroevolutionary patterns and show it decreases with the time spent in isolation. We discuss, in light of our results, the challenge of integrating present-time community ecology with macroevolutionary patterns.
期刊介绍:
It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.