The E3 ubiquitin ligase TRIM9 regulates synaptic function and actin dynamics in response to netrin-1.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-05-01 Epub Date: 2024-03-20 DOI:10.1091/mbc.E23-12-0476
Laura E McCormick, Elliot B Evans, Natalie K Barker, Laura E Herring, Graham H Diering, Stephanie L Gupton
{"title":"The E3 ubiquitin ligase TRIM9 regulates synaptic function and actin dynamics in response to netrin-1.","authors":"Laura E McCormick, Elliot B Evans, Natalie K Barker, Laura E Herring, Graham H Diering, Stephanie L Gupton","doi":"10.1091/mbc.E23-12-0476","DOIUrl":null,"url":null,"abstract":"<p><p>During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1-dependent axon guidance and branching. Here, we demonstrate that TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the postsynaptic density (PSD) within dendritic spines and loss of <i>Trim9</i> alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of <i>Trim9.</i> In addition, we document changes in the synaptic receptors associated with loss of <i>Trim9.</i> These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose that TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151106/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E23-12-0476","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

During neuronal development, dynamic filopodia emerge from dendrites and mature into functional dendritic spines during synaptogenesis. Dendritic filopodia and spines respond to extracellular cues, influencing dendritic spine shape and size as well as synaptic function. Previously, the E3 ubiquitin ligase TRIM9 was shown to regulate filopodia in early stages of neuronal development, including netrin-1-dependent axon guidance and branching. Here, we demonstrate that TRIM9 also localizes to dendritic filopodia and spines of murine cortical and hippocampal neurons during synaptogenesis and is required for synaptic responses to netrin. In particular, TRIM9 is enriched in the postsynaptic density (PSD) within dendritic spines and loss of Trim9 alters the PSD proteome, including the actin cytoskeleton landscape. While netrin exposure induces accumulation of the Arp2/3 complex and filamentous actin in dendritic spine heads, this response is disrupted by genetic deletion of Trim9. In addition, we document changes in the synaptic receptors associated with loss of Trim9. These defects converge on a loss of netrin-dependent increases in neuronal firing rates, indicating TRIM9 is required downstream of synaptic netrin-1 signaling. We propose that TRIM9 regulates cytoskeletal dynamics in dendritic spines and is required for the proper response to synaptic stimuli.

E3泛素连接酶TRIM9调节突触功能和肌动蛋白动态,以响应网状蛋白-1的作用。
在神经元发育过程中,树突会出现动态丝状体,并在突触发生过程中成熟为功能性树突棘。树突状丝状体和棘突对细胞外线索做出反应,影响树突棘突的形状和大小以及突触功能。以前的研究表明,E3泛素连接酶TRIM9在神经元发育的早期阶段调控丝状体,包括依赖于netrin-1的轴突导向和分支。在这里,我们证明了在突触发生过程中,TRIM9 也会定位到小鼠皮质神经元和海马神经元的树突丝状体和棘上,并且是突触对 netrin 的反应所必需的。特别是,TRIM9 在树突棘内的突触后密度(PSD)中富集,Trim9 的缺失会改变 PSD 蛋白组,包括肌动蛋白细胞骨架结构。虽然暴露于净蛋白会诱导 Arp2/3 复合物和丝状肌动蛋白在树突棘头部聚集,但基因缺失 Trim9 会破坏这种反应。此外,我们还记录了与 Trim9 缺失相关的突触受体的变化。这些缺陷汇聚在神经元发射率的网织蛋白依赖性增加上,表明 TRIM9 在突触网织蛋白-1 信号传导的下游是必需的。我们认为 TRIM9 可调节树突棘的细胞骨架动力学,是对突触刺激做出正确反应的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信