{"title":"Influence of Amputation on Kinetic Chain Musculature Activity During Basic and Modified Core Exercises.","authors":"Kaiqi Liu, Linhong Ji, Yijia Lu","doi":"10.1123/ijspp.2023-0215","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Core strength is vital for athletic performance, and many more exercises that involve the kinetic chain have been designed for able-bodied athletes. Disabilities that impair the kinetic chain can reduce the effectiveness of strength training. However, the impact of amputation on core strength training of people with disabilities and its underlying mechanism remains unclear. This study aimed to evaluate the muscle activation patterns and levels in athletes with amputation during 4 basic and modified weight-bearing core strength-training exercises.</p><p><strong>Methods: </strong>Fifteen elite athletes with unilateral amputation (170.6 [7.3] cm; 63.9 [11.9] kg; 25.9 [5.3] y) volunteered for this study. Surface electromyography was used to measure the muscle activity mainly in the lumbopelvic-hip complex-stabilizing muscles during 4 kinetic chain trunk exercises with and without modifications.</p><p><strong>Results: </strong>The significance level was set at α = .05. The results showed a significant difference in muscle activation between different body sides (P < .05). Specifically, amputation on the support position resulted in a diagonal pattern of muscle activation, and amputation on the free distal segments resulted in a unilateral dominant pattern with higher activation in muscles on the nonamputated side (P < .05). Modifications led to significant decreases in muscle activation asymmetry index (P < .05).</p><p><strong>Conclusions: </strong>Amputation caused muscle activation asymmetry and 2 activation patterns. Modifications by enhancing proximal stability and adjusting distal loading effectively reduced the asymmetry of muscle activation. Coaches and clinicians can use these results to tailor exercises for athletes with disabilities in training and rehabilitation.</p>","PeriodicalId":14295,"journal":{"name":"International journal of sports physiology and performance","volume":" ","pages":"487-495"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sports physiology and performance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/ijspp.2023-0215","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Core strength is vital for athletic performance, and many more exercises that involve the kinetic chain have been designed for able-bodied athletes. Disabilities that impair the kinetic chain can reduce the effectiveness of strength training. However, the impact of amputation on core strength training of people with disabilities and its underlying mechanism remains unclear. This study aimed to evaluate the muscle activation patterns and levels in athletes with amputation during 4 basic and modified weight-bearing core strength-training exercises.
Methods: Fifteen elite athletes with unilateral amputation (170.6 [7.3] cm; 63.9 [11.9] kg; 25.9 [5.3] y) volunteered for this study. Surface electromyography was used to measure the muscle activity mainly in the lumbopelvic-hip complex-stabilizing muscles during 4 kinetic chain trunk exercises with and without modifications.
Results: The significance level was set at α = .05. The results showed a significant difference in muscle activation between different body sides (P < .05). Specifically, amputation on the support position resulted in a diagonal pattern of muscle activation, and amputation on the free distal segments resulted in a unilateral dominant pattern with higher activation in muscles on the nonamputated side (P < .05). Modifications led to significant decreases in muscle activation asymmetry index (P < .05).
Conclusions: Amputation caused muscle activation asymmetry and 2 activation patterns. Modifications by enhancing proximal stability and adjusting distal loading effectively reduced the asymmetry of muscle activation. Coaches and clinicians can use these results to tailor exercises for athletes with disabilities in training and rehabilitation.
期刊介绍:
The International Journal of Sports Physiology and Performance (IJSPP) focuses on sport physiology and performance and is dedicated to advancing the knowledge of sport and exercise physiologists, sport-performance researchers, and other sport scientists. The journal publishes authoritative peer-reviewed research in sport physiology and related disciplines, with an emphasis on work having direct practical applications in enhancing sport performance in sport physiology and related disciplines. IJSPP publishes 10 issues per year: January, February, March, April, May, July, August, September, October, and November.