Shuangtao Li, Yongchang He, Dharshaun Turner, Naili Wei, Luyao Ma, Devin H Taylor, Danielle T Taylor, Xiaoyu Ji, Jie Wu
{"title":"Electrophysiological Phenotypes of Hippocampal Synaptic and Network Functions in Cannabinoid Receptor 2 Knockout Mice.","authors":"Shuangtao Li, Yongchang He, Dharshaun Turner, Naili Wei, Luyao Ma, Devin H Taylor, Danielle T Taylor, Xiaoyu Ji, Jie Wu","doi":"10.1089/can.2023.0186","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The cannabinoid receptor 2 (CB2R), a cannabinoid receptor primarily expressed in immune cells, has been found in the brain, particularly in the hippocampus, where it plays crucial roles in modulating various neural functions, including synaptic plasticity, neuroprotection, neurogenesis, anxiety and stress responses, and neuroinflammation. Despite this growing understanding, the intricate electrophysiological characteristics of hippocampal neurons in CB2R knockout (CB2R KO) mice remain elusive. <b>Aim and Methods:</b> This study aimed to comprehensively assess the electrophysiological traits of hippocampal synaptic and network functions in CB2R KO mice. The focus was on aspects such as synaptic transmission, short- and long-term synaptic plasticity, and neural network synchrony (theta oscillations). <b>Results:</b> Our findings unveiled multiple functional traits in these CB2R KO mice, notably elevated synaptic transmission in hippocampal CA1 neurons, decreased both synaptic short-term plasticity (paired-pulse facilitation) and long-term potentiation (LTP), and impaired neural network synchronization. <b>Conclusion:</b> In essence, this study yields insightful revelations about the influence of CB2Rs on hippocampal neural functions. By illuminating the electrophysiological modifications in CB2R KO mice, our research enriches the comprehension of CB2R involvement in hippocampal function. Such insights could hold implications for advancing our understanding of the neural mechanisms under the influence of CB2Rs within the brain.</p>","PeriodicalId":9386,"journal":{"name":"Cannabis and Cannabinoid Research","volume":" ","pages":"1267-1276"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cannabis and Cannabinoid Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/can.2023.0186","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The cannabinoid receptor 2 (CB2R), a cannabinoid receptor primarily expressed in immune cells, has been found in the brain, particularly in the hippocampus, where it plays crucial roles in modulating various neural functions, including synaptic plasticity, neuroprotection, neurogenesis, anxiety and stress responses, and neuroinflammation. Despite this growing understanding, the intricate electrophysiological characteristics of hippocampal neurons in CB2R knockout (CB2R KO) mice remain elusive. Aim and Methods: This study aimed to comprehensively assess the electrophysiological traits of hippocampal synaptic and network functions in CB2R KO mice. The focus was on aspects such as synaptic transmission, short- and long-term synaptic plasticity, and neural network synchrony (theta oscillations). Results: Our findings unveiled multiple functional traits in these CB2R KO mice, notably elevated synaptic transmission in hippocampal CA1 neurons, decreased both synaptic short-term plasticity (paired-pulse facilitation) and long-term potentiation (LTP), and impaired neural network synchronization. Conclusion: In essence, this study yields insightful revelations about the influence of CB2Rs on hippocampal neural functions. By illuminating the electrophysiological modifications in CB2R KO mice, our research enriches the comprehension of CB2R involvement in hippocampal function. Such insights could hold implications for advancing our understanding of the neural mechanisms under the influence of CB2Rs within the brain.