Experimental study of the motion and shape of a vapor bubble rising in an annular channel at subatmospheric pressure

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE
R. A. Dekhtyar, V. V. Ovchinnikov
{"title":"Experimental study of the motion and shape of a vapor bubble rising in an annular channel at subatmospheric pressure","authors":"R. A. Dekhtyar,&nbsp;V. V. Ovchinnikov","doi":"10.1134/S0869864323060082","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental study was performed for the dynamics of vapor bubble rising in the annular channel at subatmospheric pressure. The gas bubble is formed during boiling of superheated degassed liquid in an annular channel restricted by two glass tubes with the diameters of 25 and 16 mm. It was demonstrated that the dynamics of vapor cavity while rising the vapor bubble in the annular channel demonstrates a qualitative difference from the dynamics for an ascending gas bubble. The behavior is similar to a Taylor vapor bubble behavior in a round tube with a small diameter. One of typical features of vapor cavity behavior in an annular channel is the possibility of vapor cavity decay after the bubble collapse during the pulsation flow mode.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323060082","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Experimental study was performed for the dynamics of vapor bubble rising in the annular channel at subatmospheric pressure. The gas bubble is formed during boiling of superheated degassed liquid in an annular channel restricted by two glass tubes with the diameters of 25 and 16 mm. It was demonstrated that the dynamics of vapor cavity while rising the vapor bubble in the annular channel demonstrates a qualitative difference from the dynamics for an ascending gas bubble. The behavior is similar to a Taylor vapor bubble behavior in a round tube with a small diameter. One of typical features of vapor cavity behavior in an annular channel is the possibility of vapor cavity decay after the bubble collapse during the pulsation flow mode.

亚大气压下环形通道中上升的蒸汽泡的运动和形状的实验研究
对亚大气压下环形通道中蒸汽气泡上升的动力学进行了实验研究。气泡是过热脱气液体在由两根直径分别为 25 毫米和 16 毫米的玻璃管限制的环形通道中沸腾时形成的。实验证明,环形通道中气泡上升时的蒸汽腔动力学与上升气泡的动力学有本质区别。其行为类似于小直径圆管中的泰勒气泡行为。环形通道中蒸汽腔行为的典型特征之一是,在脉动流模式下,气泡崩溃后蒸汽腔可能会衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信