{"title":"Fabrication and evaluation of cross-linked nanogels of Dexibuprofen","authors":"Azka Ikram, Ikrima Khalid, Ikram Ullah Khan, Kashif Barkat, Waqas Ahmad, Haroon Khaild Syed, Ayesha Jamshed","doi":"10.1177/08839115231223962","DOIUrl":null,"url":null,"abstract":"The objective of this study was to design and develop an Agarose-based polymeric nanogel network system for solubility enhancement of a lipophilic drug, Dexibuprofen. Polymeric nanogels were synthesized through free radical polymerization where Agarose was cross-linked with 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) in the presence of ammonium persulfate (APS) as an initiator and N, N’-Methylenebisacrylamide (MBA) as crosslinking agent. The resulting polymeric nanogels underwent a comprehensive characterization process including Fourier transform infrared (FTIR), particle size analysis, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD), and swelling studies to confirm the preparation of a stable polymeric nanogel system. FTIR spectral findings revealed that Agarose was chemically cross-linked with AMPS and confirmed the successful insertion of AMPS chains on the Agarose backbone. Particle size analysis revealed a diameter of 168 nm with a zeta potential of −9.91 mV, providing assurance of a stable polymeric nanogel system. SEM images depicted a highly porous surface. DSC and TGA results showed a more thermally stable network system than individual ingredients. Swelling studies revealed an increased swelling ratio of polymeric nanogels at phosphate buffer of pH 6.8 than acidic buffer of pH 1.2. Dexibuprofen was efficiently loaded into a polymeric nanogel system with a high entrapment efficiency of up to 80%. The solubility of the drug was enhanced when introduced to a polymeric nanogel formulation when compared to pure drug. The system reproducibility was evaluated through in vitro drug release and kinetic modeling of drug release. Toxicity studies confirmed the formulation’s effectiveness, showcasing the developed polymeric nanogels as a promising option for delivering lipophilic drugs, with outstanding physicochemical properties, improved solubility, and minimal oral toxicity.","PeriodicalId":15038,"journal":{"name":"Journal of Bioactive and Compatible Polymers","volume":"70 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioactive and Compatible Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08839115231223962","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to design and develop an Agarose-based polymeric nanogel network system for solubility enhancement of a lipophilic drug, Dexibuprofen. Polymeric nanogels were synthesized through free radical polymerization where Agarose was cross-linked with 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) in the presence of ammonium persulfate (APS) as an initiator and N, N’-Methylenebisacrylamide (MBA) as crosslinking agent. The resulting polymeric nanogels underwent a comprehensive characterization process including Fourier transform infrared (FTIR), particle size analysis, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD), and swelling studies to confirm the preparation of a stable polymeric nanogel system. FTIR spectral findings revealed that Agarose was chemically cross-linked with AMPS and confirmed the successful insertion of AMPS chains on the Agarose backbone. Particle size analysis revealed a diameter of 168 nm with a zeta potential of −9.91 mV, providing assurance of a stable polymeric nanogel system. SEM images depicted a highly porous surface. DSC and TGA results showed a more thermally stable network system than individual ingredients. Swelling studies revealed an increased swelling ratio of polymeric nanogels at phosphate buffer of pH 6.8 than acidic buffer of pH 1.2. Dexibuprofen was efficiently loaded into a polymeric nanogel system with a high entrapment efficiency of up to 80%. The solubility of the drug was enhanced when introduced to a polymeric nanogel formulation when compared to pure drug. The system reproducibility was evaluated through in vitro drug release and kinetic modeling of drug release. Toxicity studies confirmed the formulation’s effectiveness, showcasing the developed polymeric nanogels as a promising option for delivering lipophilic drugs, with outstanding physicochemical properties, improved solubility, and minimal oral toxicity.
期刊介绍:
The use and importance of biomedical polymers, especially in pharmacology, is growing rapidly. The Journal of Bioactive and Compatible Polymers is a fully peer-reviewed scholarly journal that provides biomedical polymer scientists and researchers with new information on important advances in this field. Examples of specific areas of interest to the journal include: polymeric drugs and drug design; polymeric functionalization and structures related to biological activity or compatibility; natural polymer modification to achieve specific biological activity or compatibility; enzyme modelling by polymers; membranes for biological use; liposome stabilization and cell modeling. This journal is a member of the Committee on Publication Ethics (COPE).