Fe–Si Powder Nitriding Control System

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING
I. B. Oparina, A. A. Kirsankin, M. A. Sevost’yanov, G. P. Dvoichenkova
{"title":"Fe–Si Powder Nitriding Control System","authors":"I. B. Oparina, A. A. Kirsankin, M. A. Sevost’yanov, G. P. Dvoichenkova","doi":"10.1134/s0036029523120236","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—To reduce the losses of ferrosilicon during heavy-medium separation, it is necessary to increase its corrosion and mechanical resistance with the obligatory preservation of magnetic properties. To form ferrosilicon powder with the specified physical and mechanical characteristics that meet the technological process requirements, an automated heat treatment process control system is designed. The formed nitrided layer thickness is found to be controlled by the holding time and temperature. The total processing time is 3 h, and the temperature can vary in the range 900–1000°C. At higher temperatures, intense growth of silicon nitride crystals occurs.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0036029523120236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract—To reduce the losses of ferrosilicon during heavy-medium separation, it is necessary to increase its corrosion and mechanical resistance with the obligatory preservation of magnetic properties. To form ferrosilicon powder with the specified physical and mechanical characteristics that meet the technological process requirements, an automated heat treatment process control system is designed. The formed nitrided layer thickness is found to be controlled by the holding time and temperature. The total processing time is 3 h, and the temperature can vary in the range 900–1000°C. At higher temperatures, intense growth of silicon nitride crystals occurs.

Abstract Image

硅铁粉氮化控制系统
摘要--为了减少硅铁在重介分离过程中的损耗,必须在保证磁性能的前提下提高其耐腐蚀性和机械性能。为了使硅铁粉末具有符合技术工艺要求的特定物理和机械特性,设计了一种自动热处理工艺控制系统。形成的氮化层厚度由保温时间和温度控制。总处理时间为 3 小时,温度可在 900-1000°C 范围内变化。在较高温度下,氮化硅晶体会发生剧烈生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Metallurgy (Metally)
Russian Metallurgy (Metally) METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
0.70
自引率
25.00%
发文量
140
期刊介绍: Russian Metallurgy (Metally)  publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信