Quantitative analysis of passive intermodulation and surface roughness

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Eric Stachura, Niklas Wellander, Elena Cherkaev
{"title":"Quantitative analysis of passive intermodulation and surface roughness","authors":"Eric Stachura,&nbsp;Niklas Wellander,&nbsp;Elena Cherkaev","doi":"10.1111/sapm.12688","DOIUrl":null,"url":null,"abstract":"<p>We explore the relationship between rough surface conductors and the phenomenon of passive intermodulation. The underlying surface is taken to be the boundary of a Lipschitz domain, and a characteristic angle of the domain is used to track boundary dependence on the various fields. To model electro-thermal passive intermodulation in particular, we consider a specific type of temperature-dependent conductivity and determine conditions on the conductivity under which one can use fixed point arguments to solve an induction heating and Joule heating problem on a Lipschitz domain. In the latter problem, we also consider a time-dependent permittivity function <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>. Finally, weak solutions to a magneto-quasi-static problem are obtained when the permeability µ is temperature dependent and is allowed to degenerate in a certain way. An interesting effect of the rough surface is the inherently limited Sobolev regularity of the electric field, which can be improved if one assumes additional constraints on the boundary.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the relationship between rough surface conductors and the phenomenon of passive intermodulation. The underlying surface is taken to be the boundary of a Lipschitz domain, and a characteristic angle of the domain is used to track boundary dependence on the various fields. To model electro-thermal passive intermodulation in particular, we consider a specific type of temperature-dependent conductivity and determine conditions on the conductivity under which one can use fixed point arguments to solve an induction heating and Joule heating problem on a Lipschitz domain. In the latter problem, we also consider a time-dependent permittivity function ε $\varepsilon$ . Finally, weak solutions to a magneto-quasi-static problem are obtained when the permeability µ is temperature dependent and is allowed to degenerate in a certain way. An interesting effect of the rough surface is the inherently limited Sobolev regularity of the electric field, which can be improved if one assumes additional constraints on the boundary.

被动互调和表面粗糙度的定量分析
我们探讨了粗糙表面导体与无源互调现象之间的关系。底层表面被视为一个 Lipschitz 域的边界,该域的特征角用于跟踪各种场的边界依赖性。为了特别模拟电热被动互调,我们考虑了一种特定类型的随温度变化的电导率,并确定了电导率的条件,在这些条件下,我们可以使用定点论证来解决 Lipschitz 域上的感应加热和焦耳加热问题。在后一个问题中,我们还考虑了随时间变化的介电常数函数。最后,当磁导率 µ 与温度相关并允许以某种方式退化时,我们可以得到磁准静态问题的弱解。粗糙表面的一个有趣影响是电场的 Sobolev 正则性受到了固有的限制,如果我们在边界上假设额外的约束条件,就可以改善这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信