Fungal Carbon: A Cost-Effective Tunable Network Template for Creating Supercapacitors

IF 4.4 4区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mitchell P. Jones, Qixiang Jiang, Andreas Mautner, Aida Naghilou, Alexander Prado-Roller, Marion Wolff, Thomas Koch, Vasiliki-Maria Archodoulaki, Alexander Bismarck
{"title":"Fungal Carbon: A Cost-Effective Tunable Network Template for Creating Supercapacitors","authors":"Mitchell P. Jones,&nbsp;Qixiang Jiang,&nbsp;Andreas Mautner,&nbsp;Aida Naghilou,&nbsp;Alexander Prado-Roller,&nbsp;Marion Wolff,&nbsp;Thomas Koch,&nbsp;Vasiliki-Maria Archodoulaki,&nbsp;Alexander Bismarck","doi":"10.1002/gch2.202300315","DOIUrl":null,"url":null,"abstract":"<p>Carbons form critical components in biogas purification and energy storage systems and are used to modify polymer matrices. The environmental impact of producing carbons has driven research interest in biomass-derived carbons, although these have yield, processing, and resource competition limitations. Naturally formed fungal filaments are investigated, which are abundantly available as food- and biotechnology-industry by-products and wastes as cost-effective and sustainable templates for carbon networks. Pyrolyzed <i>Agaricus bisporus</i> and <i>Pleurotus eryngii</i> filament networks are mesoporous and microscale with a size regime close to carbon fibers. Their BET surface areas of ≈282 m<sup>2</sup> g<sup>−1</sup> and ≈60 m<sup>2</sup> g<sup>−1</sup>, respectively, greatly exceed values associated with carbon fibers and non-activated pyrolyzed bacterial cellulose and approximately on par with values for carbon black and CNTs in addition to pyrolyzed pinewood, rice husk, corn stover or olive mill waste. They also exhibit greater specific capacitance than both non-activated and activated pyrolyzed bacterial cellulose in addition to YP-50F (coconut shell based) commercial carbons. The high surface area and specific capacitance of fungal carbon coupled with the potential to tune these properties through species- and growth-environment-associated differences in network and filament morphology and inclusion of inorganic material through biomineralization makes them potentially useful in creating supercapacitors.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300315","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202300315","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Carbons form critical components in biogas purification and energy storage systems and are used to modify polymer matrices. The environmental impact of producing carbons has driven research interest in biomass-derived carbons, although these have yield, processing, and resource competition limitations. Naturally formed fungal filaments are investigated, which are abundantly available as food- and biotechnology-industry by-products and wastes as cost-effective and sustainable templates for carbon networks. Pyrolyzed Agaricus bisporus and Pleurotus eryngii filament networks are mesoporous and microscale with a size regime close to carbon fibers. Their BET surface areas of ≈282 m2 g−1 and ≈60 m2 g−1, respectively, greatly exceed values associated with carbon fibers and non-activated pyrolyzed bacterial cellulose and approximately on par with values for carbon black and CNTs in addition to pyrolyzed pinewood, rice husk, corn stover or olive mill waste. They also exhibit greater specific capacitance than both non-activated and activated pyrolyzed bacterial cellulose in addition to YP-50F (coconut shell based) commercial carbons. The high surface area and specific capacitance of fungal carbon coupled with the potential to tune these properties through species- and growth-environment-associated differences in network and filament morphology and inclusion of inorganic material through biomineralization makes them potentially useful in creating supercapacitors.

Abstract Image

Abstract Image

真菌碳:用于制造超级电容器的经济高效的可调网络模板
碳元素是沼气净化和能源储存系统的重要组成部分,并可用于改性聚合物基质。生产碳对环境的影响推动了对生物质衍生碳的研究兴趣,尽管这些碳在产量、加工和资源竞争方面存在限制。本研究对天然形成的真菌菌丝进行了研究,这些菌丝作为食品和生物技术行业的副产品和废物,可作为碳网络的成本效益高且可持续的模板。热解的双孢蘑菇和红豆杉菌丝网络具有中孔和微尺度,其尺寸机制接近碳纤维。它们的 BET 表面积分别为 ≈282 m2 g-1 和 ≈60 m2 g-1,大大超过了碳纤维和非活化热解细菌纤维素的相关值,与碳黑和碳纳米管以及热解松木、稻壳、玉米秸秆或橄榄碾磨废料的相关值大致相当。除了 YP-50F(椰壳基)商用碳之外,它们还比非活化和活化热解细菌纤维素表现出更大的比电容。真菌碳的高表面积和比电容,以及通过物种和生长环境相关的网络和菌丝形态差异和生物矿化过程中无机材料的加入来调整这些特性的潜力,使它们在制造超级电容器方面具有潜在的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Challenges
Global Challenges MULTIDISCIPLINARY SCIENCES-
CiteScore
8.70
自引率
0.00%
发文量
79
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信