Lun Ge, Xiaoguang Zhou, Yongqiang Li, Yongcong Wang
{"title":"Deep reinforcement learning navigation via decision transformer in autonomous driving","authors":"Lun Ge, Xiaoguang Zhou, Yongqiang Li, Yongcong Wang","doi":"10.3389/fnbot.2024.1338189","DOIUrl":null,"url":null,"abstract":"In real-world scenarios, making navigation decisions for autonomous driving involves a sequential set of steps. These judgments are made based on partial observations of the environment, while the underlying model of the environment remains unknown. A prevalent method for resolving such issues is reinforcement learning, in which the agent acquires knowledge through a succession of rewards in addition to fragmentary and noisy observations. This study introduces an algorithm named deep reinforcement learning navigation via decision transformer (DRLNDT) to address the challenge of enhancing the decision-making capabilities of autonomous vehicles operating in partially observable urban environments. The DRLNDT framework is built around the Soft Actor-Critic (SAC) algorithm. DRLNDT utilizes Transformer neural networks to effectively model the temporal dependencies in observations and actions. This approach aids in mitigating judgment errors that may arise due to sensor noise or occlusion within a given state. The process of extracting latent vectors from high-quality images involves the utilization of a variational autoencoder (VAE). This technique effectively reduces the dimensionality of the state space, resulting in enhanced training efficiency. The multimodal state space consists of vector states, including velocity and position, which the vehicle's intrinsic sensors can readily obtain. Additionally, latent vectors derived from high-quality images are incorporated to facilitate the Agent's assessment of the present trajectory. Experiments demonstrate that DRLNDT may achieve a superior optimal policy without prior knowledge of the environment, detailed maps, or routing assistance, surpassing the baseline technique and other policy methods that lack historical data.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"117 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1338189","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In real-world scenarios, making navigation decisions for autonomous driving involves a sequential set of steps. These judgments are made based on partial observations of the environment, while the underlying model of the environment remains unknown. A prevalent method for resolving such issues is reinforcement learning, in which the agent acquires knowledge through a succession of rewards in addition to fragmentary and noisy observations. This study introduces an algorithm named deep reinforcement learning navigation via decision transformer (DRLNDT) to address the challenge of enhancing the decision-making capabilities of autonomous vehicles operating in partially observable urban environments. The DRLNDT framework is built around the Soft Actor-Critic (SAC) algorithm. DRLNDT utilizes Transformer neural networks to effectively model the temporal dependencies in observations and actions. This approach aids in mitigating judgment errors that may arise due to sensor noise or occlusion within a given state. The process of extracting latent vectors from high-quality images involves the utilization of a variational autoencoder (VAE). This technique effectively reduces the dimensionality of the state space, resulting in enhanced training efficiency. The multimodal state space consists of vector states, including velocity and position, which the vehicle's intrinsic sensors can readily obtain. Additionally, latent vectors derived from high-quality images are incorporated to facilitate the Agent's assessment of the present trajectory. Experiments demonstrate that DRLNDT may achieve a superior optimal policy without prior knowledge of the environment, detailed maps, or routing assistance, surpassing the baseline technique and other policy methods that lack historical data.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.