Tinnitus-related increases in single-unit activity in awake rat auditory cortex correlate with tinnitus behavior

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rui Cai, Lynne Ling, Madan Ghimire , Kevin A. Brownell, Donald M. Caspary
{"title":"Tinnitus-related increases in single-unit activity in awake rat auditory cortex correlate with tinnitus behavior","authors":"Rui Cai,&nbsp;Lynne Ling,&nbsp;Madan Ghimire ,&nbsp;Kevin A. Brownell,&nbsp;Donald M. Caspary","doi":"10.1016/j.heares.2024.108993","DOIUrl":null,"url":null,"abstract":"<div><p>Tinnitus is known to affect 10–15 % of the population, severely impacting 1–2 % of those afflicted. Canonically, tinnitus is generally a consequence of peripheral auditory damage resulting in maladaptive plastic changes in excitatory/inhibitory homeostasis at multiple levels of the central auditory pathway as well as changes in diverse nonauditory structures. Animal studies of primary auditory cortex (A1) generally find tinnitus-related changes in excitability across A1 layers and differences between inhibitory neuronal subtypes. Changes due to sound-exposure include changes in spontaneous activity, cross-columnar synchrony, bursting and tonotopic organization. Few studies in A1 directly correlate tinnitus-related changes in neural activity to an individual animal's behavioral evidence of tinnitus. The present study used an established condition-suppression sound-exposure model of chronic tinnitus and recorded spontaneous and driven single-unit responses from A1 layers 5 and 6 of awake Long-Evans rats. A1 units recorded from animals with behavioral evidence of tinnitus showed significant increases in spontaneous and sound-evoked activity which directly correlated to the animal's tinnitus score. Significant increases in the number of bursting units, the number of bursts/minute and burst duration were seen for A1 units recorded from animals with behavioral evidence of tinnitus. The present A1 findings support prior unit recording studies in auditory thalamus and recent in vitro findings in this same animal model. The present findings are consistent with sensory cortical studies showing tinnitus- and neuropathic pain-related down-regulation of inhibition and increased excitation based on plastic neurotransmitter and potassium channel changes. Reducing A1 deep-layer tinnitus-related hyperactivity is a potential target for tinnitus pharmacotherapy.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"445 ","pages":"Article 108993"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524000467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Tinnitus is known to affect 10–15 % of the population, severely impacting 1–2 % of those afflicted. Canonically, tinnitus is generally a consequence of peripheral auditory damage resulting in maladaptive plastic changes in excitatory/inhibitory homeostasis at multiple levels of the central auditory pathway as well as changes in diverse nonauditory structures. Animal studies of primary auditory cortex (A1) generally find tinnitus-related changes in excitability across A1 layers and differences between inhibitory neuronal subtypes. Changes due to sound-exposure include changes in spontaneous activity, cross-columnar synchrony, bursting and tonotopic organization. Few studies in A1 directly correlate tinnitus-related changes in neural activity to an individual animal's behavioral evidence of tinnitus. The present study used an established condition-suppression sound-exposure model of chronic tinnitus and recorded spontaneous and driven single-unit responses from A1 layers 5 and 6 of awake Long-Evans rats. A1 units recorded from animals with behavioral evidence of tinnitus showed significant increases in spontaneous and sound-evoked activity which directly correlated to the animal's tinnitus score. Significant increases in the number of bursting units, the number of bursts/minute and burst duration were seen for A1 units recorded from animals with behavioral evidence of tinnitus. The present A1 findings support prior unit recording studies in auditory thalamus and recent in vitro findings in this same animal model. The present findings are consistent with sensory cortical studies showing tinnitus- and neuropathic pain-related down-regulation of inhibition and increased excitation based on plastic neurotransmitter and potassium channel changes. Reducing A1 deep-layer tinnitus-related hyperactivity is a potential target for tinnitus pharmacotherapy.

清醒大鼠听觉皮层中与耳鸣相关的单机活动增加与耳鸣行为有关
与经过类似训练、年龄匹配、未暴露于声音的对照组相比,从暴露于声音的耳鸣大鼠交流深层记录到的单个单元显示出突发性单元百分比的增加。4 只对照组大鼠(蓝色)和 4 只耳鸣大鼠(红色)的交流单元自发发射率和爆发频率与归一化耳鸣评分(z-score)呈显著正相关。每个形状代表一个单个单元的反应。[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信