Boosting the Biodegradation and Bioactivity of PBS-DLS Copolymers via Incorporation of PEG

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Moein Zarei, Beata Michalkiewicz, Miroslawa El Fray
{"title":"Boosting the Biodegradation and Bioactivity of PBS-DLS Copolymers via Incorporation of PEG","authors":"Moein Zarei,&nbsp;Beata Michalkiewicz,&nbsp;Miroslawa El Fray","doi":"10.1002/mame.202300443","DOIUrl":null,"url":null,"abstract":"<p>Biodegradable polymers play a crucial role in the development of materials for biomedical applications. This study investigates the enzymatic biodegradation, bioactivity, and cytotoxicity of poly(butylene succinate-dilinoleic succinate) (PBS-DLS) copolymers modified with poly(ethylene glycol) (PEG). Two copolymer variations with different segmental compositions (70 wt.% and 60 wt.% of hard segments) are synthesized. After modifying the copolymers with PEG, the presence of a lipase catalyst accelerated degradation after 20 days, evidenced by reduced residual content. Gel permeation chromatography analysis showed up to 40% decrease in molecular weight, while gravimetric analysis indicated a mass loss of up to 10%. Morphological examination revealed that the enzymatic breakdown, facilitated by hydrolase activity (boosted by the presence of PEG), resulted in surface erosion, holes, and changes in spherulitic morphology. Bioactivity studies demonstrated the formation of biomimetic calcium/phosphate (Ca/P) crystals. Copolymers with higher crystallinity (70 wt.% hard segments) favored tricalcium phosphate-like crystal formation, while those with lower crystallinity (60 wt.% hard segments) are more susceptible to hydroxyapatite precipitation. In vitro cytotoxicity tests exhibited excellent cell viability and attachment for all copolymers. The ability to control degradation through PEG modification, along with their bioactivity and cell compatibility, positions them as promising candidates for diverse biomedical applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202300443","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202300443","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biodegradable polymers play a crucial role in the development of materials for biomedical applications. This study investigates the enzymatic biodegradation, bioactivity, and cytotoxicity of poly(butylene succinate-dilinoleic succinate) (PBS-DLS) copolymers modified with poly(ethylene glycol) (PEG). Two copolymer variations with different segmental compositions (70 wt.% and 60 wt.% of hard segments) are synthesized. After modifying the copolymers with PEG, the presence of a lipase catalyst accelerated degradation after 20 days, evidenced by reduced residual content. Gel permeation chromatography analysis showed up to 40% decrease in molecular weight, while gravimetric analysis indicated a mass loss of up to 10%. Morphological examination revealed that the enzymatic breakdown, facilitated by hydrolase activity (boosted by the presence of PEG), resulted in surface erosion, holes, and changes in spherulitic morphology. Bioactivity studies demonstrated the formation of biomimetic calcium/phosphate (Ca/P) crystals. Copolymers with higher crystallinity (70 wt.% hard segments) favored tricalcium phosphate-like crystal formation, while those with lower crystallinity (60 wt.% hard segments) are more susceptible to hydroxyapatite precipitation. In vitro cytotoxicity tests exhibited excellent cell viability and attachment for all copolymers. The ability to control degradation through PEG modification, along with their bioactivity and cell compatibility, positions them as promising candidates for diverse biomedical applications.

Abstract Image

Abstract Image

通过加入 PEG 提高 PBS-DLS 共聚物的生物降解和生物活性
可生物降解聚合物在生物医学应用材料的开发中发挥着至关重要的作用。本研究探讨了用聚乙二醇(PEG)改性的聚(丁二酸丁二酯-二亚油酸丁二酯)(PBS-DLS)共聚物的酶生物降解、生物活性和细胞毒性。我们合成了两种具有不同片段组成(70 wt.%和 60 wt.%硬片段)的共聚物。用 PEG 对共聚物进行改性后,脂肪酶催化剂的存在加快了 20 天后的降解速度,残留物含量的减少就是证明。凝胶渗透色谱分析显示,分子量下降达 40%,而重量分析则显示质量损失达 10%。形态学检查显示,水解酶活性(PEG 的存在增强了酶的活性)促进了酶的分解,导致表面侵蚀、孔洞和球状形态的变化。生物活性研究表明形成了仿生物钙/磷酸盐(Ca/P)晶体。结晶度较高(70 wt.%硬段)的共聚物有利于形成类似磷酸三钙的晶体,而结晶度较低(60 wt.%硬段)的共聚物则更容易析出羟基磷灰石。体外细胞毒性测试表明,所有共聚物的细胞存活率和附着力都非常出色。通过 PEG 改性控制降解的能力,以及它们的生物活性和细胞兼容性,使它们成为各种生物医学应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信