Ryan R. Knight;Ryan Q. Rudy;Jeffrey S. Pulskamp;Robert R. Benoit;Don L. DeVoe;Esmond Lau
{"title":"Quadruple Mass Gyroscope Angle Random Walk Reduction Through Linearized Transduction","authors":"Ryan R. Knight;Ryan Q. Rudy;Jeffrey S. Pulskamp;Robert R. Benoit;Don L. DeVoe;Esmond Lau","doi":"10.1109/JMEMS.2023.3337636","DOIUrl":null,"url":null,"abstract":"A quadruple mass Coriolis vibratory gyroscope operating in the mode-matched condition has been redesigned with the singular focus of minimizing nonlinear transduction mechanisms, thereby allowing for angle random walk (ARW) noise reduction when operating at amplitudes higher than \n<inline-formula> <tex-math>$2~\\mu \\text{m}$ </tex-math></inline-formula>\n. This is achieved through the following steps: (i) redesigning the Coriolis mass folded flexures and shuttle springs, (ii) linearizing the antiphase coupler spring rate while maintaining parasitic modal separation, (iii) replacing parallel plate transducers with linear combs, (iv) implementing dedicated force-balanced electrostatic frequency tuners, and (v) microTorr vacuum packaging enabling operation at the thermoelastic dissipation limit of silicon. Additionally, cross-axis stiffness is reduced through folded-flexure moment balancing to further reduce ARW. By the balancing of positive and negative Duffing frequency contributions, net frequency nonlinearity was further reduced to −20 ppm. The gyroscope presented in this study has achieved an ARW of 0.0005 deg/\n<inline-formula> <tex-math>$\\surd $ </tex-math></inline-formula>\nhr, with an uncompensated bias instability of 0.08 deg/hr. These advancements hold promise for enhancing the performance of precision vibratory gyroscopes for navigation and North-finding applications. [2023-0144]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 3","pages":"308-321"},"PeriodicalIF":2.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10474014/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A quadruple mass Coriolis vibratory gyroscope operating in the mode-matched condition has been redesigned with the singular focus of minimizing nonlinear transduction mechanisms, thereby allowing for angle random walk (ARW) noise reduction when operating at amplitudes higher than
$2~\mu \text{m}$
. This is achieved through the following steps: (i) redesigning the Coriolis mass folded flexures and shuttle springs, (ii) linearizing the antiphase coupler spring rate while maintaining parasitic modal separation, (iii) replacing parallel plate transducers with linear combs, (iv) implementing dedicated force-balanced electrostatic frequency tuners, and (v) microTorr vacuum packaging enabling operation at the thermoelastic dissipation limit of silicon. Additionally, cross-axis stiffness is reduced through folded-flexure moment balancing to further reduce ARW. By the balancing of positive and negative Duffing frequency contributions, net frequency nonlinearity was further reduced to −20 ppm. The gyroscope presented in this study has achieved an ARW of 0.0005 deg/
$\surd $
hr, with an uncompensated bias instability of 0.08 deg/hr. These advancements hold promise for enhancing the performance of precision vibratory gyroscopes for navigation and North-finding applications. [2023-0144]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.