Commutativity Preservers of Incidence Algebras

Pub Date : 2024-03-19 DOI:10.1007/s10468-024-10265-x
Érica Z. Fornaroli, Mykola Khrypchenko, Ednei A. Santulo Jr
{"title":"Commutativity Preservers of Incidence Algebras","authors":"Érica Z. Fornaroli,&nbsp;Mykola Khrypchenko,&nbsp;Ednei A. Santulo Jr","doi":"10.1007/s10468-024-10265-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>I</i>(<i>X</i>, <i>K</i>) be the incidence algebra of a finite connected poset <i>X</i> over a field <i>K</i> and <i>D</i>(<i>X</i>, <i>K</i>) its subalgebra consisting of diagonal elements. We describe the bijective linear maps <span>\\(\\varphi :I(X,K)\\rightarrow I(X,K)\\)</span> that strongly preserve the commutativity and satisfy <span>\\(\\varphi (D(X,K))=D(X,K)\\)</span>. We prove that such a map <span>\\(\\varphi \\)</span> is a composition of a commutativity preserver of shift type and a commutativity preserver associated to a quadruple <span>\\((\\theta ,\\sigma ,c,\\kappa )\\)</span> of simpler maps <span>\\(\\theta \\)</span>, <span>\\(\\sigma \\)</span>, <i>c</i> and a sequence <span>\\(\\kappa \\)</span> of elements of <i>K</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10265-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let I(XK) be the incidence algebra of a finite connected poset X over a field K and D(XK) its subalgebra consisting of diagonal elements. We describe the bijective linear maps \(\varphi :I(X,K)\rightarrow I(X,K)\) that strongly preserve the commutativity and satisfy \(\varphi (D(X,K))=D(X,K)\). We prove that such a map \(\varphi \) is a composition of a commutativity preserver of shift type and a commutativity preserver associated to a quadruple \((\theta ,\sigma ,c,\kappa )\) of simpler maps \(\theta \), \(\sigma \), c and a sequence \(\kappa \) of elements of K.

分享
查看原文
发生代数的交换性保全器
让 I(X, K) 是一个域 K 上有限连接的集合 X 的入射代数,D(X, K) 是由对角元素组成的子代数。我们描述了双射线性映射(\varphi :I(X,K)\rightarrow I(X,K)\),这些映射强保留了交换性并满足\(\varphi (D(X,K))=D(X,K)\).我们证明这样一个映射((\varphi \))是移位类型的换向保护器和换向保护器的组合,换向保护器与简单映射((\theta \),\(\sigma \),c,\kappa ))的四元组(((\theta ,\sigma ,\c,\kappa))和K的元素序列((\kappa \))相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信