{"title":"Scene text detection using structured information and an end-to-end trainable generative adversarial networks","authors":"Palanichamy Naveen, Mahmoud Hassaballah","doi":"10.1007/s10044-024-01259-y","DOIUrl":null,"url":null,"abstract":"<p>Scene text detection poses a considerable challenge due to the diverse nature of text appearance, backgrounds, and orientations. Enhancing robustness, accuracy, and efficiency in this context is vital for several applications, such as optical character recognition, image understanding, and autonomous vehicles. This paper explores the integration of generative adversarial network (GAN) and network variational autoencoder (VAE) to create a robust and potent text detection network. The proposed architecture comprises three interconnected modules: the VAE module, the GAN module, and the text detection module. In this framework, the VAE module plays a pivotal role in generating diverse and variable text regions. Subsequently, the GAN module refines and enhances these regions, ensuring heightened realism and accuracy. Then, the text detection module takes charge of identifying text regions in the input image via assigning confidence scores to each region. The comprehensive training of the entire network involves minimizing a joint loss function that encompasses the VAE loss, the GAN loss, and the text detection loss. The VAE loss ensures diversity in generated text regions and the GAN loss guarantees realism and accuracy, while the text detection loss ensures high-precision identification of text regions. The proposed method employs an encoder-decoder structure within the VAE module and a generator-discriminator structure in the GAN module. Rigorous testing on diverse datasets including Total-Text, CTW1500, ICDAR 2015, ICDAR 2017, ReCTS, TD500, COCO-Text, SynthText, Street View Text, and KIAST Scene Text demonstrates the superior performance of the proposed method compared to existing approaches.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"1 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01259-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Scene text detection poses a considerable challenge due to the diverse nature of text appearance, backgrounds, and orientations. Enhancing robustness, accuracy, and efficiency in this context is vital for several applications, such as optical character recognition, image understanding, and autonomous vehicles. This paper explores the integration of generative adversarial network (GAN) and network variational autoencoder (VAE) to create a robust and potent text detection network. The proposed architecture comprises three interconnected modules: the VAE module, the GAN module, and the text detection module. In this framework, the VAE module plays a pivotal role in generating diverse and variable text regions. Subsequently, the GAN module refines and enhances these regions, ensuring heightened realism and accuracy. Then, the text detection module takes charge of identifying text regions in the input image via assigning confidence scores to each region. The comprehensive training of the entire network involves minimizing a joint loss function that encompasses the VAE loss, the GAN loss, and the text detection loss. The VAE loss ensures diversity in generated text regions and the GAN loss guarantees realism and accuracy, while the text detection loss ensures high-precision identification of text regions. The proposed method employs an encoder-decoder structure within the VAE module and a generator-discriminator structure in the GAN module. Rigorous testing on diverse datasets including Total-Text, CTW1500, ICDAR 2015, ICDAR 2017, ReCTS, TD500, COCO-Text, SynthText, Street View Text, and KIAST Scene Text demonstrates the superior performance of the proposed method compared to existing approaches.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.