{"title":"Advancing Roof Fall Rate Prediction in Underground Coal Mines: A Comprehensive Analysis Using the Rock Engineering System Method","authors":"Hadi Fattahi, Hossein Ghaedi","doi":"10.1007/s42461-024-00962-y","DOIUrl":null,"url":null,"abstract":"<p>Despite the significant role of coal in the economic progress of nations, the occupational and health risks associated with its mining pose a major concern for industry stakeholders. The occurrence of roof collapses in coal mines remains a critical factor leading to substantial loss of life and financial damages for miners. Therefore, accurately predicting the roof fall rate (RFR) holds paramount importance. However, the uncertainty surrounding rock parameters in mines hinders the application of conventional methods to assess roof collapse rates in coal mines. To tackle the challenges associated with predicting roof fall rates in underground coal mines, this study proposes a novel solution by leveraging the Rock Engineering System (RES) method. The investigation is grounded in a dataset comprising 109 data points, encompassing crucial input parameters like depth of cover (DOF), primary roof support (PRSUP), intersection diagonal span (IS), mining height (MH), and coal mine roof rating (CMRR). In the model construction phase, 80% of the data (87 points) were utilized to build the RES model. A critical aspect of this study involves the evaluation of the RES model’s performance against alternative regression techniques, namely linear, power, exponential, polynomial, and logarithmic regression. This comparison was executed using the remaining 24 data points (20% of the dataset) for rigorous evaluation. Employing key statistical metrics such as mean square error (MSE), root mean square error (RMSE), and squared correlation coefficient (<i>R</i><sup>2</sup>), the study systematically demonstrated the superior accuracy of the RES-based method compared to other approaches. In conclusion, the outcomes strongly support the efficacy of the RES method in predicting roof fall rates, not only in the specific case studied but also indicating promise for its application in other underground coal projects. This underscores the potential of the RES method as a reliable and versatile tool for forecasting roof fall rates in the complex and critical context of underground coal mining.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00962-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the significant role of coal in the economic progress of nations, the occupational and health risks associated with its mining pose a major concern for industry stakeholders. The occurrence of roof collapses in coal mines remains a critical factor leading to substantial loss of life and financial damages for miners. Therefore, accurately predicting the roof fall rate (RFR) holds paramount importance. However, the uncertainty surrounding rock parameters in mines hinders the application of conventional methods to assess roof collapse rates in coal mines. To tackle the challenges associated with predicting roof fall rates in underground coal mines, this study proposes a novel solution by leveraging the Rock Engineering System (RES) method. The investigation is grounded in a dataset comprising 109 data points, encompassing crucial input parameters like depth of cover (DOF), primary roof support (PRSUP), intersection diagonal span (IS), mining height (MH), and coal mine roof rating (CMRR). In the model construction phase, 80% of the data (87 points) were utilized to build the RES model. A critical aspect of this study involves the evaluation of the RES model’s performance against alternative regression techniques, namely linear, power, exponential, polynomial, and logarithmic regression. This comparison was executed using the remaining 24 data points (20% of the dataset) for rigorous evaluation. Employing key statistical metrics such as mean square error (MSE), root mean square error (RMSE), and squared correlation coefficient (R2), the study systematically demonstrated the superior accuracy of the RES-based method compared to other approaches. In conclusion, the outcomes strongly support the efficacy of the RES method in predicting roof fall rates, not only in the specific case studied but also indicating promise for its application in other underground coal projects. This underscores the potential of the RES method as a reliable and versatile tool for forecasting roof fall rates in the complex and critical context of underground coal mining.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.