Probable Novel APP Met671Leu Mutation in a Chinese Han Family with Early-Onset Alzheimer’s Disease

IF 3.3 4区 医学 Q2 NEUROSCIENCES
Limin Ma, Fengyu Wang, Shuai Chen, Shenghui Wang, Zhenzhen Wang, Mingrong Xia, Yongli Li, Huimin Ma, Junkui Shang, Jiewen Zhang
{"title":"Probable Novel APP Met671Leu Mutation in a Chinese Han Family with Early-Onset Alzheimer’s Disease","authors":"Limin Ma, Fengyu Wang, Shuai Chen, Shenghui Wang, Zhenzhen Wang, Mingrong Xia, Yongli Li, Huimin Ma, Junkui Shang, Jiewen Zhang","doi":"10.1007/s12017-023-08770-1","DOIUrl":null,"url":null,"abstract":"<p>Familial Alzheimer’s disease (AD) is a rare disease caused by autosomal-dominant mutations. APP (encoding amyloid precursor protein), PSEN1 (encoding presenilin 1), and PSEN2 (encoding presenilin 2) are the most common genes cause dominant inherited AD. This study aimed to demonstrate a Chinese early-onset AD pedigree presenting as progressive memory impairment, apraxia, visual-spatial disorders, psychobehavioral disorders, and personality changes with a novel APP gene mutation. The family contains four patients, three carries and three normal family members. The proband underwent brain magnetic resonance imaging (MRI), <sup>18</sup>F-fludeoxyglucose positron emission tomography (<sup>18</sup>F-FDG-PET), cerebrospinal fluid amyloid detection, <sup>18</sup>F-florbetapir (AV-45) Positron Emission Computed Tomography (PET) imaging, whole-exome sequencing and Sanger sequencing. Brain MRI images showed brain atrophy, especially in the entorhinal cortex, temporal hippocampus, and lateral ventricle dilation. The FDG-PET showed hypometabolism in the frontotemporal, parietal, and hippocampal regions. <sup>18</sup>F-florbetapir (AV-45) PET imaging showed cerebral cortex Aβ protein deposition. The cerebrospinal fluid amyloid protein test showed Aβ42/Aβ40 ratio decreases, pathological phosphor-tau level increases. Whole-exome sequencing detected a new missense mutation of codon 671 (M671L), which was a heterozygous A to T point mutation at position 2011 (c.2011A &gt; T) in exon 16 of the amyloid precursor protein, resulting in the replacement of methionine to Leucine. The co-separation analysis was validated in this family. The mutation was found in 3 patients, 3 clinical normal members in the family, but not in the other 3 unaffected family members, 100 unrelated normal subjects, or 100 sporadic patients with AD. This mutation was probably pathogenic and novel in a Chinese Han family with early-onset AD.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"14 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-023-08770-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Familial Alzheimer’s disease (AD) is a rare disease caused by autosomal-dominant mutations. APP (encoding amyloid precursor protein), PSEN1 (encoding presenilin 1), and PSEN2 (encoding presenilin 2) are the most common genes cause dominant inherited AD. This study aimed to demonstrate a Chinese early-onset AD pedigree presenting as progressive memory impairment, apraxia, visual-spatial disorders, psychobehavioral disorders, and personality changes with a novel APP gene mutation. The family contains four patients, three carries and three normal family members. The proband underwent brain magnetic resonance imaging (MRI), 18F-fludeoxyglucose positron emission tomography (18F-FDG-PET), cerebrospinal fluid amyloid detection, 18F-florbetapir (AV-45) Positron Emission Computed Tomography (PET) imaging, whole-exome sequencing and Sanger sequencing. Brain MRI images showed brain atrophy, especially in the entorhinal cortex, temporal hippocampus, and lateral ventricle dilation. The FDG-PET showed hypometabolism in the frontotemporal, parietal, and hippocampal regions. 18F-florbetapir (AV-45) PET imaging showed cerebral cortex Aβ protein deposition. The cerebrospinal fluid amyloid protein test showed Aβ42/Aβ40 ratio decreases, pathological phosphor-tau level increases. Whole-exome sequencing detected a new missense mutation of codon 671 (M671L), which was a heterozygous A to T point mutation at position 2011 (c.2011A > T) in exon 16 of the amyloid precursor protein, resulting in the replacement of methionine to Leucine. The co-separation analysis was validated in this family. The mutation was found in 3 patients, 3 clinical normal members in the family, but not in the other 3 unaffected family members, 100 unrelated normal subjects, or 100 sporadic patients with AD. This mutation was probably pathogenic and novel in a Chinese Han family with early-onset AD.

Abstract Image

一个中国汉族早老性痴呆症家族中可能出现的新型 APP Met671Leu 基因突变
家族性阿尔茨海默病(AD)是一种由常染色体显性突变引起的罕见疾病。APP(编码淀粉样前体蛋白)、PSEN1(编码早老素1)和PSEN2(编码早老素2)是导致显性遗传性阿尔茨海默病的最常见基因。本研究旨在证明一个中国早发型AD家系,其表现为进行性记忆障碍、失语、视觉空间障碍、精神行为障碍和人格改变,并伴有新型APP基因突变。家族中有四名患者、三名携带者和三名正常家庭成员。该患者接受了脑磁共振成像(MRI)、18F-氟脱氧葡萄糖正电子发射断层扫描(18F-FDG-PET)、脑脊液淀粉样蛋白检测、18F-氟贝他匹(AV-45)正电子发射计算机断层扫描(PET)成像、全基因组测序和桑格测序。大脑核磁共振成像图像显示脑萎缩,尤其是内叶皮层、颞叶海马和侧脑室扩张。FDG-PET显示额颞叶、顶叶和海马区代谢低下。18F-氟贝他匹(AV-45)PET成像显示大脑皮层Aβ蛋白沉积。脑脊液淀粉样蛋白检测显示,Aβ42/Aβ40比值下降,病理磷-tau水平升高。全外显子测序发现了一个新的密码子671(M671L)错义突变,即淀粉样前体蛋白第16外显子2011位(c.2011A >T)的A到T的杂合点突变,导致蛋氨酸被亮氨酸取代。共同分离分析在该家族中得到了验证。在该家族的 3 名患者、3 名临床正常成员中发现了该突变,但在其他 3 名未受影响的家族成员、100 名无关的正常人或 100 名散发性 AD 患者中未发现该突变。在一个中国汉族早发型AD家族中,该突变可能是致病性的,也是新发现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信