Sarah C. Woodford, Dale L. Robinson, Jaafar Abduo, Peter V. S. Lee, David C. Ackland
{"title":"Muscle and joint mechanics during maximum force biting following total temporomandibular joint replacement surgery","authors":"Sarah C. Woodford, Dale L. Robinson, Jaafar Abduo, Peter V. S. Lee, David C. Ackland","doi":"10.1007/s10237-023-01807-1","DOIUrl":null,"url":null,"abstract":"<div><p>Total temporomandibular joint replacement (TMJR) surgery is the established treatment for severe temporomandibular joint disorders. While TMJR surgery is known to increase mouth-opening capacity, reduce pain and improve quality of life, little is known about post-surgical jaw function during activities of daily living such as biting and chewing. The aim of this study was to use subject-specific 3D bite force measurements to evaluate the magnitude and direction of joint loading in unilateral total TMJR patients and compare these data to those in healthy control subjects. An optoelectronic tracking system was used to measure jaw kinematics while biting a rubber sample for 5 unilateral total TMJR patients and 8 controls. Finite element simulations driven by the measured kinematics were employed to calculate the resultant bite force generated when compressing the rubber between teeth during biting tasks. Subject-specific musculoskeletal models were subsequently used to calculate muscle and TMJ loading. Unilateral total TMJR patients generated a bite force of 249.6 ± 24.4 N and 164.2 ± 62.3 N when biting on the contralateral and ipsilateral molars, respectively. In contrast, controls generated a bite force of 317.1 ± 206.6 N. Unilateral total TMJR patients biting on the contralateral molars had a significantly higher lateral TMJ force direction (median difference: 63.6°, <i>p</i> = 0.028) and a significantly lower ratio of working TMJ force to bite force (median difference: 0.17, <i>p</i> = 0.049) than controls. Results of this study may guide TMJ prosthesis design and evaluation of dental implants.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"809 - 823"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-023-01807-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-023-01807-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Total temporomandibular joint replacement (TMJR) surgery is the established treatment for severe temporomandibular joint disorders. While TMJR surgery is known to increase mouth-opening capacity, reduce pain and improve quality of life, little is known about post-surgical jaw function during activities of daily living such as biting and chewing. The aim of this study was to use subject-specific 3D bite force measurements to evaluate the magnitude and direction of joint loading in unilateral total TMJR patients and compare these data to those in healthy control subjects. An optoelectronic tracking system was used to measure jaw kinematics while biting a rubber sample for 5 unilateral total TMJR patients and 8 controls. Finite element simulations driven by the measured kinematics were employed to calculate the resultant bite force generated when compressing the rubber between teeth during biting tasks. Subject-specific musculoskeletal models were subsequently used to calculate muscle and TMJ loading. Unilateral total TMJR patients generated a bite force of 249.6 ± 24.4 N and 164.2 ± 62.3 N when biting on the contralateral and ipsilateral molars, respectively. In contrast, controls generated a bite force of 317.1 ± 206.6 N. Unilateral total TMJR patients biting on the contralateral molars had a significantly higher lateral TMJ force direction (median difference: 63.6°, p = 0.028) and a significantly lower ratio of working TMJ force to bite force (median difference: 0.17, p = 0.049) than controls. Results of this study may guide TMJ prosthesis design and evaluation of dental implants.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.