Effects of drought stress on the functional traits and rhizosphere microbial community structure of Cyperus esculentus

IF 1.1 4区 农林科学 Q3 AGRICULTURE, MULTIDISCIPLINARY
Binshuo Liu, Yunhang Hu, Ming Li, Honghai Xue, Ying Wang, Zhonghe Li
{"title":"Effects of drought stress on the functional traits and rhizosphere microbial community structure of Cyperus esculentus","authors":"Binshuo Liu,&nbsp;Yunhang Hu,&nbsp;Ming Li,&nbsp;Honghai Xue,&nbsp;Ying Wang,&nbsp;Zhonghe Li","doi":"10.1111/grs.12422","DOIUrl":null,"url":null,"abstract":"<p>Drought is a major factor limiting plant growth. Plants cope with stress via morphophysiological responses. Rhizosphere-related bacteria, fungi and other microorganisms can help plants cope with drought via various mechanisms. We conducted a pot experiment on <i>Cyperus esculentus</i> wherein we subjected it to various drought levels and analyzed the functional traits of its aboveground and belowground organs. High-throughput sequencing was used to study the structure and diversity of the microbial community in the rhizosphere. Drought stress substantially lowered the densities of the leaves, stems, roots and seeds relative to the untreated control. Drought stress inhibited the growth and reduced the yield of <i>C. esculentus</i>. The leaves and seeds have higher water content and are more sensitive to drought stress than the roots. With the aggravation of drought stress, the plant height of <i>C. esculentus</i> decreased significantly, the root:shoot ratio increased and the specific leaf weight had no significant difference. Change in shoot height was the most evident response of <i>C. esculentus</i> to drought stress. Plants under drought stress reduced their leaf area and assumed a specific leaf weight to maintain photosynthetic performance. Rhizosphere fungi were more sensitive to drought stress than rhizosphere bacteria. Drought stress increased the relative abundances of <i>Bacteroidetes</i>, <i>Verrucomicrobia</i>, <i>Patescibacteria</i>, <i>Actinobacteria</i> and <i>Nitrospirae</i>. Drought-stressed <i>C. esculentus</i> maintained their photosynthetic performance by reducing shoot height and leaf area while assuming a stable specific leaf weight. Drought stress exerted a significantly stronger negative impact on rhizosphere fungi than rhizosphere bacteria. The results clarified the response strategies of functional traits and rhizosphere microorganisms of <i>C. esculentus</i> to drought stress.</p>","PeriodicalId":56078,"journal":{"name":"Grassland Science","volume":"70 3","pages":"109-120"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grassland Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/grs.12422","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is a major factor limiting plant growth. Plants cope with stress via morphophysiological responses. Rhizosphere-related bacteria, fungi and other microorganisms can help plants cope with drought via various mechanisms. We conducted a pot experiment on Cyperus esculentus wherein we subjected it to various drought levels and analyzed the functional traits of its aboveground and belowground organs. High-throughput sequencing was used to study the structure and diversity of the microbial community in the rhizosphere. Drought stress substantially lowered the densities of the leaves, stems, roots and seeds relative to the untreated control. Drought stress inhibited the growth and reduced the yield of C. esculentus. The leaves and seeds have higher water content and are more sensitive to drought stress than the roots. With the aggravation of drought stress, the plant height of C. esculentus decreased significantly, the root:shoot ratio increased and the specific leaf weight had no significant difference. Change in shoot height was the most evident response of C. esculentus to drought stress. Plants under drought stress reduced their leaf area and assumed a specific leaf weight to maintain photosynthetic performance. Rhizosphere fungi were more sensitive to drought stress than rhizosphere bacteria. Drought stress increased the relative abundances of Bacteroidetes, Verrucomicrobia, Patescibacteria, Actinobacteria and Nitrospirae. Drought-stressed C. esculentus maintained their photosynthetic performance by reducing shoot height and leaf area while assuming a stable specific leaf weight. Drought stress exerted a significantly stronger negative impact on rhizosphere fungi than rhizosphere bacteria. The results clarified the response strategies of functional traits and rhizosphere microorganisms of C. esculentus to drought stress.

干旱胁迫对香附功能特征和根瘤微生物群落结构的影响
干旱是限制植物生长的一个主要因素。植物通过形态生理反应来应对压力。与根瘤菌相关的细菌、真菌和其他微生物可以通过各种机制帮助植物应对干旱。我们对香附进行了盆栽实验,将其置于不同的干旱水平下,并分析了其地上和地下器官的功能特征。我们利用高通量测序技术研究了根圈微生物群落的结构和多样性。与未处理的对照组相比,干旱胁迫大大降低了叶、茎、根和种子的密度。干旱胁迫抑制了 C. esculentus 的生长并降低了产量。叶片和种子的含水量较高,对干旱胁迫比根部更敏感。随着干旱胁迫的加剧,菊芋的株高明显下降,根:芽比增加,叶片比重没有显著差异。植株高度的变化是 C. esculentus 对干旱胁迫最明显的反应。干旱胁迫下的植物减少了叶面积,并承担了一定的叶片重量以维持光合作用。与根瘤菌相比,根瘤真菌对干旱胁迫更为敏感。干旱胁迫增加了类杆菌、蛭弧菌、棒状杆菌、放线菌和硝化细菌的相对丰度。干旱胁迫下的商陆在保持稳定叶片比重的同时,通过降低芽高和叶面积来维持其光合作用性能。干旱胁迫对根圈真菌的负面影响明显强于根圈细菌。研究结果阐明了茜草的功能性状和根圈微生物对干旱胁迫的响应策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Grassland Science
Grassland Science Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Grassland Science is the official English language journal of the Japanese Society of Grassland Science. It publishes original research papers, review articles and short reports in all aspects of grassland science, with an aim of presenting and sharing knowledge, ideas and philosophies on better management and use of grasslands, forage crops and turf plants for both agricultural and non-agricultural purposes across the world. Contributions from anyone, non-members as well as members, are welcome in any of the following fields: grassland environment, landscape, ecology and systems analysis; pasture and lawn establishment, management and cultivation; grassland utilization, animal management, behavior, nutrition and production; forage conservation, processing, storage, utilization and nutritive value; physiology, morphology, pathology and entomology of plants; breeding and genetics; physicochemical property of soil, soil animals and microorganisms and plant nutrition; economics in grassland systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信