{"title":"Quantum-resistance blockchain-assisted certificateless data authentication and key exchange scheme for the smart grid metering infrastructure","authors":"Hema Shekhawat , Daya Sagar Gupta","doi":"10.1016/j.pmcj.2024.101919","DOIUrl":null,"url":null,"abstract":"<div><p>In the contemporary landscape of energy infrastructure, the “smart-grid metering infrastructure (SGMI)” emerges as a pivotal entity for efficiently monitoring and regulating electricity generation in response to client behavior. Within this context, SGMI addresses a spectrum of pertinent security and privacy concerns. This study systematically addresses the inherent research problems associated with SGMI and introduces a lattice-based blockchain-assisted certificateless data authentication and key exchange scheme. The primary aim of this scheme is to establish quantum resistance, conditional anonymity, dynamic participation, and the capacity for key updates and revocations, all of which are imperative facets for the robust implementation of mutual authentication within SGMI. Our scheme harnesses blockchain technology to mitigate the vulnerabilities associated with centralized administrative control, thus eliminating the risk of a single-point failure and distributed denial-of-service attacks. Furthermore, our proposed scheme is meticulously designed to accommodate the resource constraints of smart meters, characterized by lightweight operations. Rigorous formal security analysis is conducted within the framework of the quantum-accessible random oracle model, fortified by ’history-free reduction,’ substantiating its security credentials. Complementing this, simulation orchestration serves to underscore its superiority over existing methodologies, particularly in the realms of energy efficiency, data computation, communication, and the costs associated with private key storage.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000452","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the contemporary landscape of energy infrastructure, the “smart-grid metering infrastructure (SGMI)” emerges as a pivotal entity for efficiently monitoring and regulating electricity generation in response to client behavior. Within this context, SGMI addresses a spectrum of pertinent security and privacy concerns. This study systematically addresses the inherent research problems associated with SGMI and introduces a lattice-based blockchain-assisted certificateless data authentication and key exchange scheme. The primary aim of this scheme is to establish quantum resistance, conditional anonymity, dynamic participation, and the capacity for key updates and revocations, all of which are imperative facets for the robust implementation of mutual authentication within SGMI. Our scheme harnesses blockchain technology to mitigate the vulnerabilities associated with centralized administrative control, thus eliminating the risk of a single-point failure and distributed denial-of-service attacks. Furthermore, our proposed scheme is meticulously designed to accommodate the resource constraints of smart meters, characterized by lightweight operations. Rigorous formal security analysis is conducted within the framework of the quantum-accessible random oracle model, fortified by ’history-free reduction,’ substantiating its security credentials. Complementing this, simulation orchestration serves to underscore its superiority over existing methodologies, particularly in the realms of energy efficiency, data computation, communication, and the costs associated with private key storage.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.