Designer Lithium Reservoirs for Ultralong Life Lithium Batteries for Grid Storage

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengyu Tian, Yong Yan, Hailong Yu, Liubin Ben, Ziyu Song, Zhou Jin, Guanjun Cen, Jing Zhu, Michel Armand, Heng Zhang, Zhibin Zhou, Xuejie Huang
{"title":"Designer Lithium Reservoirs for Ultralong Life Lithium Batteries for Grid Storage","authors":"Mengyu Tian,&nbsp;Yong Yan,&nbsp;Hailong Yu,&nbsp;Liubin Ben,&nbsp;Ziyu Song,&nbsp;Zhou Jin,&nbsp;Guanjun Cen,&nbsp;Jing Zhu,&nbsp;Michel Armand,&nbsp;Heng Zhang,&nbsp;Zhibin Zhou,&nbsp;Xuejie Huang","doi":"10.1002/adma.202400707","DOIUrl":null,"url":null,"abstract":"<p>The minimization of irreversible active lithium loss stands as a pivotal concern in rechargeable lithium batteries, particularly in the context of grid-storage applications, where achieving the utmost energy density over prolonged cycling is imperative to meet stringent demands, notably in terms of life cost. Departing from conventional methodologies advocating electrode prelithiation and/or electrolyte additives, a new paradigm is proposed here: the integration of a designer lithium reservoir (DLR) featuring lithium orthosilicate (Li<sub>4</sub>SiO<sub>4</sub>) and elemental sulfur. This approach concurrently addresses active lithium consumption through solid electrolyte interphase (SEI) formation and mitigates minor yet continuous parasitic reactions at the electrode/electrolyte interface during extended cycling. The remarkable synergy between the Li-ion conductive Li<sub>4</sub>SiO<sub>4</sub> and the SEI-favorable elemental sulfur enables customizable compensation kinetics for active lithium loss throughout continuous cycling. The introduction of a minute quantity of DLR (3 wt% Li<sub>4</sub>SiO<sub>4</sub>@S) yields outstanding cycling stability in a prototype pouch cell (graphite||LiFePO<sub>4</sub>) with an ampere-hour-level capacity (≈2.3 Ah), demonstrating remarkable capacity retention (≈95%) even after 3000 cycles. This utilization of a DLR is poised to expedite the development of enduring lithium batteries for grid-storage applications and stimulate the design of practical, implantable rechargeable batteries based on related cell chemistries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 25","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202400707","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The minimization of irreversible active lithium loss stands as a pivotal concern in rechargeable lithium batteries, particularly in the context of grid-storage applications, where achieving the utmost energy density over prolonged cycling is imperative to meet stringent demands, notably in terms of life cost. Departing from conventional methodologies advocating electrode prelithiation and/or electrolyte additives, a new paradigm is proposed here: the integration of a designer lithium reservoir (DLR) featuring lithium orthosilicate (Li4SiO4) and elemental sulfur. This approach concurrently addresses active lithium consumption through solid electrolyte interphase (SEI) formation and mitigates minor yet continuous parasitic reactions at the electrode/electrolyte interface during extended cycling. The remarkable synergy between the Li-ion conductive Li4SiO4 and the SEI-favorable elemental sulfur enables customizable compensation kinetics for active lithium loss throughout continuous cycling. The introduction of a minute quantity of DLR (3 wt% Li4SiO4@S) yields outstanding cycling stability in a prototype pouch cell (graphite||LiFePO4) with an ampere-hour-level capacity (≈2.3 Ah), demonstrating remarkable capacity retention (≈95%) even after 3000 cycles. This utilization of a DLR is poised to expedite the development of enduring lithium batteries for grid-storage applications and stimulate the design of practical, implantable rechargeable batteries based on related cell chemistries.

Abstract Image

用于电网存储的超长寿命锂电池的锂蓄电池设计器
最大限度地减少不可逆的活性锂损耗是可充电锂电池的关键问题,尤其是在电网储能应用中,在长时间循环中实现最大能量密度是满足严格要求的当务之急,特别是在寿命成本方面。有别于传统的电极预硫化和/或电解液添加剂的方法,本研究提出了一种新的模式:整合以正硅酸锂(Li4SiO4)和元素硫为特征的设计型锂储层(DLR)。这种方法通过形成固体电解质相(SEI),同时解决了锂的活性消耗问题,并在长时间循环过程中减轻了电极/电解质界面上轻微但持续的寄生反应。锂离子传导性 Li4SiO4 和有利于 SEI 的硫元素之间的协同作用可实现在连续循环过程中对活性锂损耗的定制补偿动力学。在具有安培小时级容量(约 2.3 Ah)的原型袋式电池(石墨||LiFePO4)中引入微量 DLR(3 wt% Li4SiO4@S),可获得出色的循环稳定性,即使在循环 3,000 次后,仍能显示出显著的容量保持率(95%)。DLR 的使用将加速电网储能应用中耐用锂电池的开发,并促进基于相关电池化学成分的实用植入式可充电电池的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信