{"title":"1H-NMR revealed pyruvate as a differentially abundant metabolite in the venom glands of Apis cerana and Apis mellifera","authors":"Xing Zheng, Yanjun Liu, Rongshen Wang, Mingyang Geng, Jinliang Liu, Zhenxing Liu, Yazhou Zhao","doi":"10.1002/arch.22104","DOIUrl":null,"url":null,"abstract":"<p>As a common defense mechanism in Hymenoptera, bee venom has complex components. Systematic and comprehensive analysis of bee venom components can aid in early evaluation, accurate diagnosis, and protection of organ function in humans in cases of bee stings. To determine the differences in bee venom composition and metabolic pathways between <i>Apis cerana</i> and <i>Apis mellifera</i>, proton nuclear magnetic resonance (<sup>1</sup>H-NMR) technology was used to detect the metabolites in venom samples. A total of 74 metabolites were identified and structurally analyzed in the venom of <i>A. cerana</i> and <i>A. mellifera</i>. Differences in the composition and abundance of major components of bee venom from <i>A. cerana</i> and <i>A. mellifera</i> were mapped to four main metabolic pathways: valine, leucine and isoleucine biosynthesis; glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; and the tricarboxylic acid cycle. These findings indicated that the synthesis and metabolic activities of proteins or polypeptides in bee venom glands were different between <i>A. cerana</i> and <i>A. mellifera</i>. Pyruvate was highly activated in 3 selected metabolic pathways in <i>A. mellifera</i>, being much more dominant in <i>A. mellifera</i> venom than in <i>A. cerana</i> venom. These findings indicated that pyruvate in bee venom glands is involved in various life activities, such as biosynthesis and energy metabolism, by acting as a precursor substance or intermediate product.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.22104","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a common defense mechanism in Hymenoptera, bee venom has complex components. Systematic and comprehensive analysis of bee venom components can aid in early evaluation, accurate diagnosis, and protection of organ function in humans in cases of bee stings. To determine the differences in bee venom composition and metabolic pathways between Apis cerana and Apis mellifera, proton nuclear magnetic resonance (1H-NMR) technology was used to detect the metabolites in venom samples. A total of 74 metabolites were identified and structurally analyzed in the venom of A. cerana and A. mellifera. Differences in the composition and abundance of major components of bee venom from A. cerana and A. mellifera were mapped to four main metabolic pathways: valine, leucine and isoleucine biosynthesis; glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; and the tricarboxylic acid cycle. These findings indicated that the synthesis and metabolic activities of proteins or polypeptides in bee venom glands were different between A. cerana and A. mellifera. Pyruvate was highly activated in 3 selected metabolic pathways in A. mellifera, being much more dominant in A. mellifera venom than in A. cerana venom. These findings indicated that pyruvate in bee venom glands is involved in various life activities, such as biosynthesis and energy metabolism, by acting as a precursor substance or intermediate product.
期刊介绍:
Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.