Silicon solar cell efficiency improvement employing electrostatically assembled polyelectrolyte–quantum dot multilayers

Q3 Physics and Astronomy
Jose Raul Montes-Bojorquez , Maria F. Villa-Bracamonte , Omar J. Castillo , Arturo A. Ayon
{"title":"Silicon solar cell efficiency improvement employing electrostatically assembled polyelectrolyte–quantum dot multilayers","authors":"Jose Raul Montes-Bojorquez ,&nbsp;Maria F. Villa-Bracamonte ,&nbsp;Omar J. Castillo ,&nbsp;Arturo A. Ayon","doi":"10.1016/j.rio.2024.100655","DOIUrl":null,"url":null,"abstract":"<div><p>Down-shifting (DS) has proven to be an effective technique to address thermalization losses in photovoltaic devices. It involves the modification of the incident solar spectrum by luminescent species to better suit solar cell’s optimal absorption regions. Despite the number of favorable characteristics of quantum dots (QDs) as DS materials, their incorporation into highly ordered close-packed films remains the major drawback of QD-based DS applications. This limitation can be overcome by the sequential integration of QDs into a multilayered film via the layer-by-layer assembly technique, that allows the precise control of composition and thickness. The experimental results discussed herein indicate that upon optimization employing a model-assisted design approach, the spectral response of a silicon solar cell benefits from the down-shifting and antireflection capabilities of the QD film, as evinced by their quantum efficiency. For the optimum design, the incorporation of QDs triggered an increment of 26.1% in the power conversion efficiency driven by an increase of 29.2% in the short circuit current density. The controlled assembly of QD multilayers offers unique opportunities in light harvesting for new hybrid photovoltaic technologies.</p></div>","PeriodicalId":21151,"journal":{"name":"Results in Optics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266695012400052X/pdfft?md5=6f763a9d6c6bfbf212cb9ea8a16cbbda&pid=1-s2.0-S266695012400052X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Optics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266695012400052X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Down-shifting (DS) has proven to be an effective technique to address thermalization losses in photovoltaic devices. It involves the modification of the incident solar spectrum by luminescent species to better suit solar cell’s optimal absorption regions. Despite the number of favorable characteristics of quantum dots (QDs) as DS materials, their incorporation into highly ordered close-packed films remains the major drawback of QD-based DS applications. This limitation can be overcome by the sequential integration of QDs into a multilayered film via the layer-by-layer assembly technique, that allows the precise control of composition and thickness. The experimental results discussed herein indicate that upon optimization employing a model-assisted design approach, the spectral response of a silicon solar cell benefits from the down-shifting and antireflection capabilities of the QD film, as evinced by their quantum efficiency. For the optimum design, the incorporation of QDs triggered an increment of 26.1% in the power conversion efficiency driven by an increase of 29.2% in the short circuit current density. The controlled assembly of QD multilayers offers unique opportunities in light harvesting for new hybrid photovoltaic technologies.

Abstract Image

利用静电组装聚电解质-量子点多层膜提高硅太阳能电池效率
事实证明,下移(DS)是解决光伏设备热损耗的有效技术。它包括通过发光物种对入射太阳光谱进行修改,以更好地适应太阳能电池的最佳吸收区域。尽管量子点(QDs)作为DS材料具有许多有利特性,但将它们融入高度有序的紧密堆积薄膜中仍然是基于量子点的DS应用的主要缺点。通过逐层组装技术将量子点依次集成到多层薄膜中,可以精确控制成分和厚度,从而克服这一限制。本文讨论的实验结果表明,在采用模型辅助设计方法进行优化后,硅太阳能电池的光谱响应将受益于 QD 薄膜的下移和抗反射能力,其量子效率也证明了这一点。在最佳设计中,加入 QD 后,功率转换效率提高了 26.1%,而短路电流密度提高了 29.2%。QD 多层膜的可控装配为新型混合光伏技术的光收集提供了独特的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Optics
Results in Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
2.50
自引率
0.00%
发文量
115
审稿时长
71 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信