Sarra Takita , Alexi Nabok , Magdi Mussa , Matthew Kitchen , Anna Lishchuk , David Smith
{"title":"Ultrasensitive prostate cancer marker PCA3 detection with impedimetric biosensor based on specific label-free aptamers","authors":"Sarra Takita , Alexi Nabok , Magdi Mussa , Matthew Kitchen , Anna Lishchuk , David Smith","doi":"10.1016/j.biosx.2024.100462","DOIUrl":null,"url":null,"abstract":"<div><p>Prostate cancer (PCa) appears among the most frequently diagnosed types of malignancies in males. Because of the high demand and increasing detection rate of early PCa, alongside the specificity limitations of the gold standard clinical tools available for the diagnosis and prognosis of prostate cancer, there is an urgent need for more reliable PCa markers and highly sensitive diagnostic tools to avoid under-treatment and over-diagnosis. PCA3, or prostate cancer antigen 3, is a potential prostate cancer biomarker that is more specific and useful for preventing unnecessary repeat biopsies, particularly in men with persistently high prostate-specific antigen indices after a negative biopsy. Additionally, an electrochemically based biosensor would prove to be a powerful diagnostic tool for PCA3 detection in urine because of its simplicity, sensitivity, and cost-effectiveness, in contrast to the more traditional PCa diagnostics that depend on blood testing. This paper aimed to design a novel and simple electrochemical impedimetric biosensor based on a label-free RNA-aptamer (CG3-PCA3) as the molecular recognition element for detecting PCA3. The proposed aptasensor for the detection of PCA3 has been developed using a screen-printed carbon electrode (SPCE) modified by gold nanoparticles (AuNPs), further improving sensitivity and allowing the immobilisation of thiolate aptamers on its surface. The findings presented here demonstrated a high sensitivity to PCA3, with a detection limit of 20 fM in artificial urine and 1 fM in buffer. These results indicate that the PCA3 aptasensor could be a promising tool for routine PCa diagnosis due to its high sensitivity and cost-effectiveness.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"18 ","pages":"Article 100462"},"PeriodicalIF":10.6100,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000268/pdfft?md5=e319b16be9c87b15bf63c859be5df388&pid=1-s2.0-S2590137024000268-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PCa) appears among the most frequently diagnosed types of malignancies in males. Because of the high demand and increasing detection rate of early PCa, alongside the specificity limitations of the gold standard clinical tools available for the diagnosis and prognosis of prostate cancer, there is an urgent need for more reliable PCa markers and highly sensitive diagnostic tools to avoid under-treatment and over-diagnosis. PCA3, or prostate cancer antigen 3, is a potential prostate cancer biomarker that is more specific and useful for preventing unnecessary repeat biopsies, particularly in men with persistently high prostate-specific antigen indices after a negative biopsy. Additionally, an electrochemically based biosensor would prove to be a powerful diagnostic tool for PCA3 detection in urine because of its simplicity, sensitivity, and cost-effectiveness, in contrast to the more traditional PCa diagnostics that depend on blood testing. This paper aimed to design a novel and simple electrochemical impedimetric biosensor based on a label-free RNA-aptamer (CG3-PCA3) as the molecular recognition element for detecting PCA3. The proposed aptasensor for the detection of PCA3 has been developed using a screen-printed carbon electrode (SPCE) modified by gold nanoparticles (AuNPs), further improving sensitivity and allowing the immobilisation of thiolate aptamers on its surface. The findings presented here demonstrated a high sensitivity to PCA3, with a detection limit of 20 fM in artificial urine and 1 fM in buffer. These results indicate that the PCA3 aptasensor could be a promising tool for routine PCa diagnosis due to its high sensitivity and cost-effectiveness.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.