{"title":"Extremal Peisert-type graphs without the strict-EKR property","authors":"Sergey Goryainov , Chi Hoi Yip","doi":"10.1016/j.jcta.2024.105887","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that Paley graphs of square order have the strict-EKR property, that is, all maximum cliques are canonical cliques. Peisert-type graphs are natural generalizations of Paley graphs and some of them also have the strict-EKR property. Given a prime power <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>, we study Peisert-type graphs of order <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> without the strict-EKR property and with the minimum number of edges and we call such graphs extremal. We determine number of edges in extremal graphs for each value of <em>q</em>. If <em>q</em> is a square or a cube, we show the uniqueness of the extremal graph and classify all maximum cliques explicitly. Moreover, when <em>q</em> is a square, we prove that there is no Hilton-Milner type result for the extremal graph, and show the tightness of the weight-distribution bound for both non-principal eigenvalues of this graph.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105887"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000268","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is known that Paley graphs of square order have the strict-EKR property, that is, all maximum cliques are canonical cliques. Peisert-type graphs are natural generalizations of Paley graphs and some of them also have the strict-EKR property. Given a prime power , we study Peisert-type graphs of order without the strict-EKR property and with the minimum number of edges and we call such graphs extremal. We determine number of edges in extremal graphs for each value of q. If q is a square or a cube, we show the uniqueness of the extremal graph and classify all maximum cliques explicitly. Moreover, when q is a square, we prove that there is no Hilton-Milner type result for the extremal graph, and show the tightness of the weight-distribution bound for both non-principal eigenvalues of this graph.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.