Rainer Georg Joergensen, Michael Hemkemeyer, Lukas Beule, Janyl Iskakova, Zhyldyz Oskonbaeva, Pauline Sophie Rummel, Sanja Annabell Schwalb, Florian Wichern
{"title":"A hitchhiker’s guide: estimates of microbial biomass and microbial gene abundance in soil","authors":"Rainer Georg Joergensen, Michael Hemkemeyer, Lukas Beule, Janyl Iskakova, Zhyldyz Oskonbaeva, Pauline Sophie Rummel, Sanja Annabell Schwalb, Florian Wichern","doi":"10.1007/s00374-024-01810-3","DOIUrl":null,"url":null,"abstract":"<p>Information on microbial biomass carbon (MBC) is crucial to assess their stocks and role for plant nutrient release in soil. Next to fumigation-extraction, molecular methods are routinely used to estimate the contribution of fungi, bacteria, and archaea to the soil microbial community. However, more information on the links between these different indices would deepen the understanding of microbial processes. The current study is based on 11 datasets, which contain MBC and MBN data obtained by fumigation-extraction and information on bacterial, archaeal, and fungal gene abundance, totalling 765 data points from agricultural, forest, and rangeland soils. Some of these datasets additionally provide information on double-stranded deoxyribonucleic acid (dsDNA) and fungal ergosterol. MBC varied around the median of 206 µg g<sup>−1</sup> soil. MBN followed with a median MB-C/N ratio of 4.1. Median microbial gene abundance declined from bacteria (96 × 10<sup>8</sup>) to archaea (4.4 × 10<sup>8</sup>) to fungi (1.8 × 10<sup>8</sup>). The median ratio of MBC/dsDNA was 15.8 and that of bacteria/dsDNA was 5.8 × 10<sup>8</sup> µg<sup>−1</sup>. The relationships between MBC and dsDNA as well as between bacterial gene abundance and dsDNA were both negatively affected by soil pH and positively by clay content. The median ergosterol/MBC and fungi/ergosterol ratios were 0.20% and 4.7 (n × 10<sup>8</sup> µg<sup>−1</sup>), respectively. The relationship between fungal gene abundance and ergosterol was negatively affected by soil pH and clay content. Our study suggests that combining fumigation-extraction with molecular tools allows more precise insights on the physiological interactions of soil microorganisms with their surrounding environment.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"105 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01810-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Information on microbial biomass carbon (MBC) is crucial to assess their stocks and role for plant nutrient release in soil. Next to fumigation-extraction, molecular methods are routinely used to estimate the contribution of fungi, bacteria, and archaea to the soil microbial community. However, more information on the links between these different indices would deepen the understanding of microbial processes. The current study is based on 11 datasets, which contain MBC and MBN data obtained by fumigation-extraction and information on bacterial, archaeal, and fungal gene abundance, totalling 765 data points from agricultural, forest, and rangeland soils. Some of these datasets additionally provide information on double-stranded deoxyribonucleic acid (dsDNA) and fungal ergosterol. MBC varied around the median of 206 µg g−1 soil. MBN followed with a median MB-C/N ratio of 4.1. Median microbial gene abundance declined from bacteria (96 × 108) to archaea (4.4 × 108) to fungi (1.8 × 108). The median ratio of MBC/dsDNA was 15.8 and that of bacteria/dsDNA was 5.8 × 108 µg−1. The relationships between MBC and dsDNA as well as between bacterial gene abundance and dsDNA were both negatively affected by soil pH and positively by clay content. The median ergosterol/MBC and fungi/ergosterol ratios were 0.20% and 4.7 (n × 108 µg−1), respectively. The relationship between fungal gene abundance and ergosterol was negatively affected by soil pH and clay content. Our study suggests that combining fumigation-extraction with molecular tools allows more precise insights on the physiological interactions of soil microorganisms with their surrounding environment.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.